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[Text] Chapter 1. Definitions and Initial Formulas 

1.1.  Some Definitions and Formulas for Determinate Functions 

The determinate, i.e., random, functions or temporal processes 3(t) examined 
in the present section serve as the analytical representation of radar 
signals. 

We shall employ the symbol -4*- to designate a pair of Fourier transforms, 
e.g. 

which in expanded form means 

*(<)=J £(/)e'2""d/. 
—00 

ff(/)= J siO^'dt. ' (1.2) 

The letters t and f designate time and frequency. Here and below we shall 
not stipulate the existence of improper integrals, since it is assumed 
that all of the integrals of the determinate functions examined are 
absolutely convergent. 



The real temporal-process 3(t), representing high frequency oscillation 
with slowly varying amplitude S(t) and phase 2TT9(t) 

j(f) = S(0 cos {2«/./+ 2*0 (/) + ?} (1-3) 

can be written in the form 

.s(l) = Re{S(t)e'lu!<+*]) C1-4) 

or in symbolic form 

j(f) = S(0e/.,faW+", d-5) 

where f„ — carrier frequency, <f> — initial phase, S(t) — complex 

amplitude(envelope) 

S(/) = S(/)e/^(',f ' (1.6) 

which determines the form of the signal or the nature of the modulation. 
Accordingly, the function S(t) can also be called the modulation function. 

If the spectral density of the function S(t), called the modulation 
spectrum below, is G(f) 

G(l) + S(t),      .. (1.7) 

the frequency spectrum of the process 3(t) and its symbolic representation 
3(t) will accordingly be 

J(ö^ff(/) = -LGa-/0)e'*+4-0(-/-/.)e-
/'      (1.8) 

^ 

i(0^i(/) = G(/-/,)e*. (1.9) 



The overscribed bar designates complex conjugate quantities. When the 
carrier frequency is significantly greater than the modulation spectrum 
width, the frequency spectrum of the symbolic representation imitates the 
frequency spectrum of the original on the positive half-axis f (to within 
a constant of 2). 

Frequent use is made below of the scalar product 

j *i(t)*t(t)dt   ' (1.10) 
—00 

of the two oscillating processes 31(t) and 32(t) with close carrier 

frequencies f_, and f~~ 

Assuming that the result of integrating an oscillating process with 
slowly varying amplitude and phase over a sufficiently large interval is 
practically zero, the scalar product (1.10) can be represented as 

J 3, (/)st(t)dt= 4" Re(e'<?'"T,> J 5i 0 MÖe'2"lf"~M'««}== 
—CO —09 

• • «_»_ Re{e/,^) J 0i(/)0,(/ + /ol-/0,)^}.       
(1-12) 

Following the definitions introduced in [18, 8], we shall call the 
quantity 

Q'= J ^(Od/ = '-L $ |S(/)|'rf/ (1.13) 

the total energy,  and the function 

♦ W= '   J s(t)3(t—«)d/ = Re{e'2"''x 
—00 

X± J SWW^dt} 
(1.14) 

—00 



the correlation function of the process 3(t). We note that the term 
correlation function employed in the theory of random processes is 
analogously applied here to a determinate process — the signal 3(t). 
We can write 

t (-0 = |V Wl COS [2r.f9x -f x (,)], (1.15) 

where ^(T)! and K(t) — are the absolute value and argument of the 
complex correlation modulation function ^Ct) 

.  ,*(I)='J]5(/)5(Rä. (1-16) 
—00 

The power spectrum of the signal u(f) is associated with the modulation 
power spectrum ß(f) 

Q(/) = |G (/)|»-> 2Q"ir(x) d-17) 

by this formula, which is analogous to (1.8): 

•(/)=iJw«Tütf^/.)+4-Q(-/-/.)- (i-i8) 

The carrier frequency is defined by the relationship [8] 

"J (/-/>(/-/,)rf/= { S'(t)S(t)dt = 0. (1.19) 

It can be assumed in general that the power spectrum of a radar signal is 
symmetrical about the carrier frequency f_, i.e., the modulation power 

spectrum fi(f) is an even function.  Furthermore, the modulation correlation 
function V(T)  is also an even real function. Accordingly, 

x (t) = 0 for it, 



while (1.15) is transformed to 

^(,) = V(t) cos ?«/,•«. (1'20) 

Consequently, the correlation function of a radar signal looks like 
oscillation having only amplitude modulation. 

In some calculations it is helpful to employ an approximate representation 
of the modulation correlation function.  This study employs the rectangular 

approximation 

11 for \i\<-j-\, 
^H , (1.21) 

Ofor  M>-i-v 

where T — correlation time 

—oo 

J|V(x)|»dt, (1-22) 

and a representation based on expanding the function ¥(x) by powers of 
the parameter T.  If we introduce the notation 

f=-W"(0) = ^ =4*'^ , 

i —<JJ —« 

then for small T 

VW=1—l-p;*«. . (1.24) 

The parameter ß  defines the dispersion of the frequency components of 

the modulation spectrum «(f) with respect to the "center of gravity" 
(the point f=0), and can serve as a measure of the spectrum width of 

the signal 3(t). 



The signals emitted by a radar usually have a periodically repeating 
modulation function which can be written in the form 

Sr(0= fj Sru(t-.kTm)=±m   J G^^y*«'. (1.25) 
k——to     " A=—00 

It is assumed that the function S  (t) is identically equal to zero 
M 

outside the interval (0, T ).  The latter is stipulated in order for the 
M 

function in question to approximate radar signals, but is not a bound which 
flows from the exposition above. The other quantities, such as G, 9,,  ¥, 
etc., referring to the same repetition period, are also given the subscript 
T , so that 
M 

0TJf)^STJt). (1.26) 

The function (1.25) has a discrete frequency spectrum. However, by using 
the concept of delta-function 6(x) we can arrive at a generalized 
representation with which the spectral density function also includes 
separate spectral lines, including the constant component [8] 

fj *r.V-*rj~4; fj <V.(fJ'('~£)- a-27) 
*=—09 *=—00 

Operations with a delta-function based on these formal relationships 

Ht-Q + e-'1*"; (1.28) 

]f(x)i(y-x)dx=J(y), (1'29> 
—-00 

£ t(t-kT)±±  Je  r t: (1>30) 



T  S^w-S"a('-T> 
(1.31) 

_.       __ "V   T )' 
*=—oo        A=—oo 

can be carried out sufficiently rigorously. In order to do this it is 
necessary only to carry out the entire operation with the function with 

the function — exp (- —5-), or with another impulse function having unit 

area, then passing to the limit T -*■  0. 

The complex envelope S(t) of a reflected radar signal usually represents 
the product of a periodic function Sj(t) and a cutoff function l(t;T), where 

T is the effective duration of the cutoff function 

r= j" V(ttT)dt. 
—00 

We shall be using below the rectangular cutoff function 

(1.32) 

I (/ n = / l   f0r M<^LrÜ^ " (1.33) 
r'   }     \       for |<|> 0.57-j •/ ?Tf 

and the bell-shaped cutoff function 

le(/,r) = exp(-^*>j/27,exp(-21trn. 
(1.34) 

The frequency spectrum of the product is equal to the convolution of 
the frequency spectra of the factors,  so that 

OO CO 

.*=-« *=-°0      . (1.35) 

slauT-[f—rX X nTif-k) 



and 

6» s. & 
Y2T 

: x'exp [-2.7" (/-■£)"]. (1-36) 

The following general rule can be formulated. When multiplying a 
periodic function and a cutoff function, the Fourier transform becomes 
solid rather than remaining a line spectrum. Furthermore, each spectral 
line "spreads" into a spectral band which has a form similar to the 
Fourier transform of the cutoff function. 

Adjacent spectral bands of the frequency spectra (1.35) and (1.36) 
practically do not overlap.  For example, the adjacent frequency bands 

exp[-2*7" (f-T-J]        and   • exp [-W>(/-rt-+!)2j  , even with a 

relatively small ratio between the signal duration T and the modulation 
period TM totaling 2, intersect at the 0.002 level. We shall be using 

this fact later in various calculations. As an illustration, we present 
here the calculation of the correlation function of the modulation of 
the signal (1.36). Assuming that adjacent spectral bands do not overlap, 
the power spectrum of the modulation can be assumed to be 

•äö)-*(fj J nr„ fö«p[t«r{l-4-J]. a.37) 
ft——00 

The latter expression represents the convolution of the functions 

00 
i / r 

and *=-ao 
r.tf) E°«K'-*) «\W   U     \'»l   V      TJ        • (1.38) 

*=—00 

2rexp[— 4*TT], 



the Fourier transforms of which will accordingly be 

T  rfi   v 

and 

:Sf«,,*r.('-^.   • 
»i^oo M (1.39) 

exp [     4PJ* 

where 

<S«-T Jl*r.WI'^ 
(1.40) 

and 

* r H(') = 2-^7j5rM(0Sru(/-t)rf/. (1.41) 
—00 

t 

Therefore 

^)=ap(-^) f] »,«(*-*rj. (1.42) 

*=-00 

Analogously, for the signal (1.35) the correlation function of the 
modulation is 

00 

(l-f) $]*r«(*-*U for |,|<7\ 
W(t)=jV   ' /.Ü,.' (1.43) 

0 for \t\>T. 

1.2. Some Definitions and Formulas for Stationary Random Functions 

Of major importance for the theory of stationary random processes is 
Khinchin's formula [51], according to which the spectral intensity 
function v(f) of a random process n(t) and its correlation function 



are connected by the pair of Fourier transforms 

Hn + o'tW, (1.45) 
i 

where 

3» = (**(/)), (1.46) 

with the angle brackets <  > here and below designating statistical 
averaging.  It is assumed for simplicity that the mathematical 
expectation of the process n(t) is zero. 

The reception interference examined in this study is represented by a 
stationary normal process, usually called a random process. We shall 
distinguish between two types of random processes: high frequency n(t) 
and lower frequency N(t).  The spectral intensity of a low frequency 
random process N(t) is the low frequency function JP  (f) which is almost 
wholly concentrated in the vicinity of the point f=0.  Furthermore, the 
origin point on the f axis is defined by a formula analogous to (1.19). 

The spectral intensity v(f) of a high frequency random process, like the 
power spectrum of determinate signals, can be represented as 

v(/)=, ±rf(f-h) + -j-^(-/-/,), (1.47) 

where J*c  (f) is a low frequency function which is practically non-zero 
on an interval whose length is significantly smaller than the center 
frequency f_. 

Substituting (1.47) in Khinchin's formula (1.45), we find 

<«(/)«(/-*))={ J ^•ff)cos(2i./x)d/Jcos2«/,t- 
—CO ' , 

_[J^(/) Lin (2«/x)rf/Jsin (1.48) 

10 



A random process can be represented analytically in different ways. 
We recall that the spectral intensity v(f) or its Fourier transform 
<n(t)n(t-T)) characterizes a random process exhaustively. Therefore, 
the criterion for the correctness of a selected representation can be 
the coincidence of the spectral intensity V(f) or average products 
(n(t)n(t-T)) of the analytical representation and the real process. 

A high frequency random process is often represented [2, 18] as the sum 
of sinusoidal oscillations which are amplitude-modulated by low frequency 
random processes N (t) and Ng(t) 

n (I) = iU/) cos (2*/;/ + 9) -f *V(0 sln P*1*1 + T) 
(1.49) 

or 

h-<0«ReW)e'fl"ww}, (1'50) 

where <j> — arbitrary initial phase, and 

JV(/) = Afc(0-/AW. 
<1*51) 

If the high frequency process n(t) has spectral intensity v(f) assigned 
by means of (1.47), the processes Nc(t) and Ng(t) must be such that 

00 

,{Nc(t)Nc(t-i)) = (Na(t)Nt(t-*))=  J^(/)cos(2*f«)d/. ■     C1-52) 

.-J'>(/)sin(2it/T)d/. 
—°° ' 

The average product (n(t)n(t-T)/ is the same as (1.48). 

In accordance with the real conditions encountered in practical 
applications, we can then assume that the function<fc (f) is even 

11 



Then 

and 

.*•(-/) = .*•(/). (1'54) 

'(N9(t)Ne(t-*)) = {N;(t)Nt(t-i))=>  J -tf(l)d",%dft (1.55) 
—00 

(1.56) 
(Ne(t) Nt (t - *)> = (Ne (t - x) Nt (I)) = 0, 

(1.57) 

.     (n(t)n(t—t))'=(Nc(t)NcV—S))cos2*ft*. ^^ 

In this case, according to (1.56), the random processes N (t) and N (t) 
are statistically independent. c       s 

It is also possible to represent a high frequency random process n(t) 
as 

n (()'= Ncx (t) cos [2«/.f -f x (/) + 9] + A^ (/) X 
X sin [2«/,* + x (/) + <?]. (1.59) 

The determinate function K(t) defines the angle modulation principle. 
If the low frequency random processes N  (t) and N  (t) are such that 

CK SIC 

<"c W "ex << - <)> = (N„ (0 Nn (/-*)> = 

= cos [x (/) - x (/ —0J J ^ if) e'8"V/, (1.6O) 
. —00 

m (1.61) 
.     = sin [x (/) -x (/ - ,)] J ^ (/) e'2*"^. 

—SO 

the average product is 

(nit)n (/ -,)) = cos 2«/,t J ^(/) e/2"V/, (1.62) 

i.e., the same as (1.58) 

12 



The derivative N1(t) of an arbitrary differentiable random process is also 
a random process [22]. The statistical characteristics of the function 
N'(t) can be found from the statistical characteristics of the original 
function N(t).  By measuring the order of differentiation and statistical 
averaging (integration), we obtain 

(A/'(0W'(/-t))=-^(iV(0N(/-x)>, (1'63) 

<N'(W)> = 0. (1.64) 

The spectral intensity function <tf> (f) of the random process N(t) is often 
wider than the spectral lines of other temporal processes examined in 
conjunction with random ones. The spectral intensity e/T  (f) is 
approximately constant within the frequency domain employed in the 
present problem. The rate at which the function ^(f) drops off outside 
the working frequency region is of no significance from the practical 
point of view.  Therefore, a wideband random process N(t) can be 
approximated by a hypothetical process -- uncorrelated noise (white noise) 
characterized by the following relationships: 

(1.65) 
«V (/) = #, = const, 

<W (',)> = AW',-'.)- (1.66) 

The spectral intensity v(f) of a corresponding-high frequency process 
n(t) consisting of two sidebands _L^Q — /,)    and  j/(-f — /„). 
will be 

.:  ,v(,) = n.=4 (1-67) 

and 

<«cx<a)>=%-8(>.-a ■■'. (1-68) 

13 



It should be emphasized that white noise cannot be realized, and that 
it represents only a convenient mathematical idealization.  For example, 
a real normal process N(t) with correlation time T interacting on a 

K 
system with a time constant significantly larger than T behaves like 

K 
white noise with spectral intensity 

'00 

N*= J {N{t)N{t-%))d%. 

We note that we are employing representation of frequency spectra along 
the entire frequency axis from f = -°° to f=°°, while only positive 
frequencies have any physical meaning. Therefore, the spectral intensity 
which figures in our formulas, such as v(f) for the random process n(t), 
represents a quantity half as large as the real spectral intensity, which 
means the average noise power per Hertz of bandwidth. 

The following relationships hold for random processes which can be 
approximated by white noise: 

—00 —00 

oo 

2-   (fjjjNc('.)Nc(',)tfs(/,)Nt(Of(/,,/„'/,.Qdtxdtjaju\- 
—00 ' 

' =iv!fjf(/..^.U)«.*.. (1'70) 

—oo 

co 

—00 

'" 00 ■ 00 

*o [JJ ?('..'..'••'»A d'. +J$?('i.'..'i.',)<".<«.-f' (1-71) 
—00 

+ fj<?(t1,tt,lt,tl)dtldt1]. 
oo 

14 



where <J>(t-|,tJ and <}>(t,,t ,t ,t.) are arbitrary numerical functions of the 

variable t.,, t„ and t.,, t-,t,,t,. Expressions (1.69) and (1.70) are 

obtained by direct application of (1.66) and (1.56); the derivation of 
formula (1.71) is provided in [40]. 

A random process can often be represented as the convolution of white 
noise with some determinate function.  Therefore, formulas (1.69)-(1.71), 
in part, can be used to compute different moments of random processes. 

Let us assume, for example, that the random process n^tjCx) is the result 

of convolution of white noise n(t) with a determinate function of time t 
and the parameter a-s(t,a) 

ni('.«)= f n{z)s(t— 2, a)dz: {1.12) 

Then, on the basis of (1.69), 

;•"• ■(«i('i.'«.)»i('..%«.)> = ». J •»(' + <»• «!)*(' + '..■«.)<«>;■•     (1*73) 

If 

JV,(/. «) = Re{ \N{z)S{t-z,a)dz}t (1.74) 

then 

= tfeRe{ J S(H-/,. a,) S(<+',. «,)<"}• 

As a second example, let us find the mathematical expectation and 
dispersion of the function 

(1.75) 

15 



w 
00 

(t)=-i- J «,(/) I (f.T) «»(*-'«)!('-.'«. W      (1.76) 

which is a generalization of a short-time correlation function [57].. 
Process n..(t) is defined via (1.72), assuming that s(t,a)=s(t). Using 

(1.69) and (1.71), we obtain 

<(r»r (117 (,)>]•)« • 

[fI(^)[f'(x)-}-f(x}t)t(x-1)]rfx(      (1#78) 

2«.  °° 

—00 

where 

00 ; 

co 

=-i-J 1(/, T}l(t-x, T)l(t-x, Dl(l-x-x, 7)A, " 

2 
and ip(j)  and Q are the correlation function and total energy of the 
process s(t). 

In the case of a bell-shaped cutoff function 

We shall be representing various electrical oscillations which are 
certain functions of time as points or vectors in multidimensional 
space. The possibility of this representation is substantiated in 

16 



[18, 8, 63], and refined in a number of subsequent studies, which are 
reviewed in [43]. Accordingly, we shall represent the interference n(t) 
as the point n=(n ,n2...,n ), and we shall write the density of the 

probability p(n) that random interference on the interval t1<_t£t2 will 

take on a value of n (interference probability density functional) as 
[18, 8, 63]. 

p(n) = *exp[-^jV(Od']. (1.79) 

Expression (1.79) is derived on the assumption that the spectral intensity 
of random interference 

,-2-  for   |/|</m, 

o  for |/l>/m: 

Furthermore, the coefficient k in (1.79) is 

The boundary frequency f can be as high as desired. Therefore, expression 

(1.79) is used, in part, for a white noise approximation of interference. 
It must only be kept in mind that as f -> °° the coefficient k -*■ °°, and 

there exists no finite limit for the function defined by formula (1.79). 
However, since the coefficient k is independent of the realization of the 
interference n(t), the ratio of the probabilitv^density functionals for 
two interference realizations, say n*(t) and n (t), has a finite limit and 
physical meaning. The ratio of the probability density functionals 

P(n ) indicates by how much the realization n*(t) is more or less probable 

p(n ) 

than the realization n  (t).  Thus, the probability density functional of 

17 



white noise is defined to within the coefficient k.  This does not 
result in misunderstandings when using the concept of "white noise", 
since radar observation theory does not actually examine the interference 
probability density functionals, but rather their ratios. 

Chapter 9 investigates the case in which the intensity of the interference 
Nn is an unknown random quantity distributed as p1(Nn).  In this case 

expression (1.79) for the interference probability density functional 
is transformed to the following: 

m 

(1.80) 

1.3.  Combined Transmission of Signal and Interference Through 
Receiver 

We shall assume that the receiver consists of a linear radio frequency 
amplifier (incorporating in the general case an HF amplifier, a converter 
and an i.f. amplifier), an inertialess detector and a linear video 
amplifier, tuned to the frequency of the received signal.  Input to 
the receiver is the oscillation 

*(>) = »(/) + J(/-T0), d-81) 

consisting of random interference, which can be approximated by white 
noise with spectral intensity Nfi/2, and the valid signal 

j(/_,0) = S(/-t.) cos [2KM/-*.) + ?]•        (1'82) 

We recall that the real spectral intensity of the interference at the 
input of a receiver is N .  We are examining the transmission of 

amplitude-modulated (or pulsed) signals.  However, as will be shown later, 

18 



the findings can also be used for other types of radar signals. 

We shall designate the frequency responses of the radio frequency amplifier 
and video amplifier a(f) and A(f), and their Fourier transforms, i.e., the 
impulse responses of amplifiers, h(t) and H(t). The frequency response of 
the radio frequency amplifier can be represented as 

a(/) = 0B(/-/o) + 0B(f + /o). (1.83) 

where aQ(f) is a function which is practically non-zero in a comparatively 

(with fn) narrow frequency band near f=0, such that 

Furthermore, introducing the notation 

ha(l)^aa(f), (1.84) 

we find 

h{t)= j a([)tl2'l,df=2ha(t)Cos2«fat:. (1.85) 

The function 2hQ(t), determined by means of (1.84), is the envelope of 

the impulse response of the radio frequency amplifier. 

We shall give the respective subscripts 1, 2 and 3 to the different 
voltages at the output of the radio frequency amplifier, the detector 
and the video amplifier. 

The voltage x.. (t) at the output of the radio frequency amplifier is equal 

to the sum of the signal voltage 
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•S.(^-to)=   J   S(t-Xa—2)h(i)dz = 
—oo r 

and the envelope 

$t(&-*J=  J 5(?)Ä„(/-,,-?)rf? 
-w 

[PAGES 24 AND 25 OF ORIGINAL TEXT OMITTED.] 

20 

(1.87) 



2. Square-law detection of a strong signal 

Jf,(/)*S»(/-x.)7|-2S1(/-t.)Wel(/). (1.99) 

3. A weak signal 

_ Jri(0«s!('Tt.)+w!1(/)+iV.t,(0. d-100) 

The latter expression reflects accurately enough the transmission of a 
weak signal through a square-law detector; it is extremely approximate 
for a linear detector.  The accuracy of formula (1.100) for linear 
detection, however, is not important for us, since we are employing a 
square-law detector for weak signals (Chapters 6 and 8). 

The case of linear detection of a strong signal is fundamental in the 
investigations below. We note that the output of a linear strong-signal 
detector is the same as the output of a synchronous detector.  In both 
cases the phased component of the interference N ^(t) is retained at 

the output along with the signal envelope.  The quadrature component 
N , (t) is almost fully suppressed. With the matched frequency response 
si 
(1.90) the valid component S1(t-T_) and the correlation function of the 

interference N ,(t) at the output of a linear strong-signal detector 
cl 

have the same form as the modulation correlation function 

st(/-g=QTi'(/-*0)|, 
(1-101) 

< N el C) * cl C)> = -T W1' ('» - '«)• • <X '102) 

Finally, the voltage X,(t) at the video amplifier output will be 

Xt{t)= J Xt(z)II(t-z)dz. ' (1.103) 
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For linear detection of strong signals, the latter expression is 

transformed to 

*,(/)=j [S(*-X.)+JUZ)I//,(/-*)*. (1'104) 

where H_(t) is the generalized impulse response of the receiver 

Ht(t) = ]hB(S)H(t-z)dz, (1.105) 
—00 

which is the Fourier transform of the generalized frequency response Aj.(f) 

AAf)="a(f)A(D- (1-106) 

Thus in the case of linear detection of strong signals the video amplifier 
output voltage X3(t) is fully determined by the generalized response of 

the receiver Hj.(t) for Aj.(f), and it is irrelevant how this response xs 

distributed among individual components of the receiver, especially 
between the i.f. amplifier and video amplifier. 

Analogously, for square law detection of strong signals 

v4(/) = J,5[S(2l-x0)S(Zj-t0) + 2S(2l^x.)Nc(2,)]X   (1JL07) 

and for detection of weak signals 

' . - +iwi)JWl"«<<-'»»•'- 2.>dz*dz»' 
(1.108) 

22 



where H„(t..,t„) — generalized two-dimensional impulse response of 

receiver, 

Ht(/„ /.) = J ha(/,- 2)ha(tt-z)H(2)t/z,      (1.109) 

which is the Fourier transform of the generalized two dimensional 
frequency response A-(f.., f„) 

<4* (#/,)= a« (/,K(/,M (/,+/,), (1.110) 

i.e., 

#«('.; '.)= f J AM, /1)exp[/2«(/A+/i0]dArf/;:.'        (1,111) 

—oo 

Thus, in the case of square law detection of strong and weak signals 
the video amplifier output voltage X~(t) is determined by the generalized 

two-dimensional receiver response H^t^t«) or A-(f.., f2) and it is 

irrelevant how this response is distributed among the individual 
components of the receiver. 

The case is also encountered, in Chapters 5 and 7, in which the 
envelope detector has as input the oscillation 

'■«t(0 = |S,('--t.)|cos[2«/.(/-x.) + x(<-t0) + 9j-+nl(/),    (1'112) 

consisting of random interference and a signal with simultaneous 
amplitude and phase modulation. If we use the representation (1.59) 
for the random interference n (t), the output of the strong-signal 

detector can be represented as 

*,(0*|Si(/-OI + *«.(O.--':. (i.ii3) 

The low frequency random process N (t) is defined by formula (1.60). 
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CHAPTER 2.  Statistical Treatment of Radar Observation Process 

2.1. Statistical Model of Radar Observation Process 

The observation process performed by a radar operator consists of detecting 
signals reflected from targets, and estimating certain parameters of these 
signals, such as the parameters which determine the target coordinates. 

The interference which unavoidably occurs in any radio link masks the 
valid signals and makes it impossible to use the received oscillation 
to establish with absolute certaintly that a valid signal is present and 
to estimate its parameters precisely. The occurrence of interference 
causes the observation results to be random, and makes it necessary to 
study these results by statistical methods. 

Under actual operating conditions the decisions made by an operator 
when detecting signals and in estimating signal parameters are based on 
certain subjective criteria which depend upon the level of training and 
other properties of the operator. Subjective operator properties have 
some influence on radar observation performance indicators. However, the 
limiting capabilities and indicators of radar systems are determined 
primarily by the statistical nature of the problem. A statistical 
statement of the problem requires only that we free the radar observation 
process of subjective "baggage", assuming that the operator acts on the 
basis of clearly formulated decision making rules, and replacing the 
operator with a decision device. Replacing the operator with a machine — 
a computing and decision device — also corresponds to the current trend 
in the development of radar systems. 

We shall represent the statistical model of the radar observation process 
to be examined below in the form of the diagram shown in Fig. 2.1.  The 
main components of this diagram are the signal space E, the interference 
space N, the received oscillation space X, the"receiver, the output space Y, 
the decision device and the decision space S*. 

The signal space I consists of the set of all possible valid reflected _ 
signals arriving at the input of the receiver.  The set of valid signals 
can be defined in principle such that it includes the case of receiving 
several reflected signals simultaneously. However, we shall assume that 
it is possible for only one single target to be present in the space 
which the radar is examining. A brief discussion of the possibility of 
the simultaneous presence of a large number of targets (resolution problem) 
will be presented later. 
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Fig. 2.1. Statistical model of radar observation process 

The reflected signal is formed as the result of interaction between the 
radiated signal, the reflecting object and the environment. The 
reflected signal can be represented analytically as some known function 
(determined by the nature of the radiated signal) of time and a series of 
random parameters.  The random parameters in the reflected signal to be 
estimated will be called useful parameters.  The random parameters of the 
reflected signal which are not to be estimated and which are statistically 
independent with respect to the useful parameters, i.e., not containing 
information about the useful parameters, will be called parasitic 
parameters. 

The reflected signal can thus be written as the function 3(t,s,u), where 
s and u are random vector quantities which represent respectively the set 
of useful and parasitic parameters. We note that the reflected signal can 
consist of the sum of the elementary signals 3=3^+..«+3 )» differing from 

one another in carrier frequency, modulation principle or by the fact that 
they represent the state of the electromagnetic field at different points 
in real space.  It is assumed that the reflected signal 3(t,s,u) has a 
finite fixed duration of T sec.  The signal space, besides the set of 
functions 3(t,s,u), also includes the null signal which denotes the 
absence of a target. We shall designate the event "target absent" by 
the symbol s» and consider that sfl is one of the possible values of the 

random vector quantity s. 

Each point of the signal space I is thus uniquely determined by the values 
taken on by the parameters s and u.  It will be helpful below to 
introduce as well the concept of useful parameter space S, or the set of 
all possible values of the random parameter s. 
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As a rule, random parameters can take on arbitrary values within 
certain intervals.  However, in most theoretical and experimental 
studies it is useful to idealize the signal space somewhat in order 
to determine the basic dependencies and regularities.  It can be 
assumed, for example, that some of the parasitic parameters, or 
even all of the parasitic parameters, in a reflected signal are non- 
random given quantities.  This idealization makes it possible to 
determine separately the influence of each of the parasitic 
parameters on the radar observation process. 

Analogously, it can be assumed that only a single useful parameter 
is to be estimated, such as the delay time, and that the remaining 
useful parameters are fixed, i.e., given.  In this case the scanning 
is done with respect to only one parameter or one coordinate, such as 
the range coordinate in some fixed direction. The latter assumption 
makes it possible to resolve a number of important problems in radar 
theory. 

Finally, an idealization is employed in which the set of useful 
parameters s can take on only a finite number of fixed values s^, 
s„..., s , as well as the value s_. Radar lines with a discrete 
2     m U 

set of useful parameters will be called simplified radar lines. 

The present chapter imposes no limitations on the class of 
interference contained in the space N.  It is assumed only that 
the distribution p(n) is defined for the random vector quantity n 
representing the realization of the interference from the class in 
question.  Added together, the interference and the signal form the 
received oscillation x(t), which is represented by the point x in 
the space X.  The system must provide a unique transformation of the 
received oscillation space X to the decision space §*, which consists 
of the set of all possible decisions s* made during the radar observation 
process.  The decision space has the same structure as the useful 
parameter space §. 

Using as guidance the consideration of convenience in practical 
construction of the system, the latter is assumed to consist of two 
parts: a receiving device and a decision device.  Accordingly, the 
operation of transforming the received oscillation into a decision is 
split into two stages.  The first stage involves transforming the received 
oscillation into the output of the receiver; the second stage consists of 
transforming the output into a decision. 
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2.2. Statement of Problem of Optimal System Definition 

An optimal system is one which provides the decisions or estimates 
which are best in terms of a selected optimality criterion.  The 
optimality criterion is selected so that it corresponds sufficiently 
well to the nature of the problem being solved. This rule does not 
define the criterion in only a single way, and leaves open the 
possibility of substantial arbitrariness in selecting it.  The extent 
to which the selected criterion can serve as the basis for analytical 
solution of the problem should also be kept in mind. 

An estimate is a random quantity, and its quality can be determined 
only over a large number of trials. For this reason, practically 
all optimality criteria can be reduced to ensuring the minimum or 
maximum mathematical expectation of some function of the signal 
and decision (estimate). The general optimality criterion for the 
radar observation process can thus be written as [28] 

P ~ J 1r (S#' S) P ® P (S"/S) ds!ds ~ extremum» (2 i) 

where s* is the estimate of the random quantity s, i.e., the decision 
made as t'he result of making the radar observation.  The set of all 
possible decisions S*, which includes integration with respect to s*, 
consists of the interval S* corresponding to the working range of 
variation of the useful signal parameters, and of the point s* ("target 

absent" decision) outside the interval S*.  For convenience in writing 
criterion (2.1) the decision set S* is augmented by the vicinity of 
the point s*.  The useful parameter set 3 has the same structure as the 

set §*, i.e., it includes the working interval S of variation of all of 
the useful parameters s and the point s~ together with its vicinity. 

r(s*,s) is the value function, which determines the relative value or 
significance of the combined realization of a signal with parameters s 
and the decision s*.  In all cases here and below in which no misunder- 
standing can arise, the probability densities and probabilities of 
different quantities are denoted by the same letters: p — probability 
density, P — probability.  Conditional probabilities are designated by 
the same symbols as unconditional ones, and differ only by the presence 
of a slash in the argument, to the right of which is indicated the 
conditional quantity or event.  For example, p(s*/s) — conditional 
probability density for the quantity s* given realization of the 
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quantity s (signal with useful parameters s).  The character ~ over the 
symbol p means that the probability density function includes the discrete 
point s* or sQ. Thus 

PK IP(*.)*(S-S.),  SGS. 

s6S, 

(2.2) 

The symbol 6 indicates "membership", while the symbol G indicates non- 
membership.  The function p(s) determines the a priori probability of 
different outcomes. 

Simplified lines can be viewed as a special case of real lines, for 
which the set of useful parameters s can take on only one of the 
m+1 fixed values sn,   s,..., s . When using simplified lines it should 

U  1     m 
be assumed that 

p(s) = fiP(st)Hs-si), 
fc=l 

/>(s7s)=£/>(s;/s)8(s--s;). 
fc=! 

(2.3) 

1=1 

Accordingly, the general optimality criterion (2.1) for simplified 
lines becomes 

P = £ £ r. (s,, s,) P (s,) P (s* Is,) = extremunw (2.4) 

The problem of defining an optimal system consists of determining the 
correspondence (called the system operator) between the received oscillation 
x and the decision s* 
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••-üW. (2'5) 

which would satisfy the optimality condition —condition (2.1) in the 
general case. Determination of the optimal operator actually means 
determining optimal processing of the received oscillations in the 
receiver and an optimal decision rule in the decision device. A practically 
important extension of the problem of defining an optimal system is the 
calculation of the performance indicators of the system. The performance 
indicators of an optimal system are called the limiting or potential 
indicators, since they characterize the theoretically limiting capabilities 
of the system. 

The solution of the problem can be found in general form for real lines. 
Then the decision for simplified lines is obtained by applying formulas 
(2.3). However, it is more convenient to begin our examination with 
simplified lines, since this makes it possible to retain the connection 
with the customary representations which have been developed primarily 
for the two-alternative signal-no signal situation [6, 15, 61, 63, etc.]. 

Criteria (2.1) and (2.4) are Bayesian if the function r(s*,s) is assigned 
in advance and its form is independent of the decision making rule.  Of 
all known practical criteria, only the criterion of minimum information 
loss, for which 

r(s\ s) = —logp(s/s#), 

does not belong to the class of Bayesian criteria [28].  In investigating 
the radar observation process, the minimum information loss criterion 
provides essentially no advantage, but it makes problem solving much 
harder.  Therefore, it is assumed below that the function r(s*,s) is 
independent of the manner in which the estimate s* is obtained. 

2.3.  Simplified Lines 

The oscillation x is input to the receiver. After appropriate processing 
of this oscillation it is necessary to make some decision s* (j=0,l,...,m) 

In the final analysis, without separating the functions of the receiving 
and decision devices, the decision is based on the fact that the received 
oscillation space X is divided into m+1 regions: X_, X^..., X^. 
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Depending upon the region into which falls the point x, representing the 
received oscillation x(t), a corresponding decision s* is made.  This means 

that correspondence (2.5) takes on the appearance 

(2.6) 
'  s* = sy for x£Xj (1 = 0,  l,...,m) 

*■ 

and it is necessary only to define the algorithm for dividing the received 
oscillations space X into different decision regions. 

The probability P(s*/s.) that for the signal s±  arriving at the input of 

the receiving device together with interference the decision s* will be 

made, which is the same as the probability that the oscillation x will 
fall in the region X. when a signal with parameters s±  is present, 

f,(s/'/s|)={/»(x/s1)rfx. . (2.7) 

The conditional distribution function p(x/s) of the quantity x, viewed 
as a function of s with a fixed value of x, is called the likelihood 
function. For additive interference the analytical expression of the 
function p(x/s) is determined directly by the given noise distribution 
p(n). 

The quantities in (2.7) with the same subscripts for the signals and 
decisions define the conditional correct decision probabilities.  The 
quantities in (2.7) with different signal and decision subscripts define 
the conditional probabilities of various types of decision making errors. 

An error in which the decision s* (i=l,2  m) is made that one of the 

non-null signals is present when there is no signal at the input, is 
called a false alarm. The false alarm probability F is 

30 



An error in which the decision s * — "no target" is made when one of 

the non-null signals is present at the input, is called a missed signal. 

We shall assume that the value function r is defined such that the equation 
p = max is the optimality criterion. Before defining the algorithm in which 
we are interested for dividing the received oscillation space, we shall 
formulate the following lemma. 

If <j)(x,0), (|>(x,l),..., <J>(x,m) — is a set of functions defined in the space 
X such that the equality <J)(x,i)=<Kx,j) for i^j can occur only on the set of 
points of measure zero, and X_, X.. X are non-intersecting regions 

filling the space WV" y —- y\       » tnen *(£*,-*) 
1=0 

£j<p(x, i)rfx= max (2.9) 

only when the regions XA±=0,1,..., m) are defined through the system of 
inequalities 

?(x, 0>?(x. /), (/ = 0, l,...,m, l=£i). (2.10) 

Let us compose the function 

<D(x) = supfo(x, 0), <p(x, l),..„?(x, m)], (2.11) 

where the symbol sup (supremum) denotes the largest of the values 
contained in the square brackets. Then 

[*(x)rfx>£ j>(x, i)rfx. (2.12) 
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The equals sign occurs in the latter expression only if for all i 

J*(x)rfx= U(x, i)dx, (2.13) 

which leads directly to (2.10). 

The stipulated condition that the measure of the set of points at which 
<}>(x,i)=<Kx,j) is zero can be omitted. Then the _> and > signs in system 
of inequalities (2.10) must be combined. For example, for all j>i we 
write the sign _>, and for all j < i we write the sign >. Keeping this 
remark in mind, we can later not concern ourselves with weather or not 
the aforementioned condition is satisfied. 

We now transform expression (2.4) as follows: 

m        m 
p=£j/£r(s;, s,)P(s,)p(x|Si)rfx=max. (2.14) 

/=0 Xj fc=0 

Based on the proof above, we conclude that condition (2.14) of the maximum 
of the quantity p is satisfied if the system of inequalities 

M> ■-.■■ ^ /=% •- '      (2.15) 

"K*=sO, I,..., m, k=£j).     \\!\ 

is used as the definition of the region X. (j=0,l,..., m). 

The problem is solved completely analogously when the value function r is 
defined such that the optimality criterion consists of minimizing the 
quantity p.  In this case it is necessary only to introduce the function 
inf (infinum), which denotes the smallest value, instead of the function 
sup.  This makes it necessary to replace the _> sign in the final result 
of (2.15) with < . 

This separation of the regions makes it possible to define, in general form 
for simplified lines (i.e., based on a general optimality criterion), 
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optimal processing of the received oscillations in the receiver and an 
optimal decision making rule for the decision device. 

The boundary between the receiving and decision devices is somewhat 
arbitrary, and is determined by considerations of convenience in 
practical circuit implementation.  It is possible to have an arbitrary 
unique variation in the output of the receiver with a corresponding 
variation in the decision making rule.  It is also possible for various 
operations on the received oscillations to be related to either the 
receiving or the decision device. It is only necessary that the joint 
action of the receiving and decision devices ensure that system of 
inequalities (2.15) is satisfied when decisions are made. For example, 
when the oscillation x is received, the receiver might output the sequence 
of the quantities P(s.) p(x|s.) for all values of i (the Woodward-Davis 
system).  In this case the decision device multiplies the output by the 
corresponding coefficients of r(s*,s), performs the summation 

(2.16) 

»-0 
^iWv *>)?(*) pirn 

and compares the values of the sums E. with one another. The decision 

s* is made that that signal s. is present for which the quantity Z is 
3  ■ ■ ■ ^ .    _ 

greatest. The final result remains the same if the operations of 
multiplication by r(s*, s.) and summation are done by the receiving 

device or, conversely, if the receiver is relieved of multiplying by 
P(s.) by transferring that operation to the decision device. 

In theoretical investigations it is convenient to use the concept of 
"likelihood coefficient" [63], which we shall designate by the symbol A 
and which is defined as 

A(s) = '<«"> (2'17) 

Like the likelihood function in the numerator of (2.17), the likelihood 
coefficient is a function of the signal parameters (or, in the general 
case, a function of the point in the signal space) for a fixed value of 
the received oscillation x. 
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Keeping (2.17) in mind, the following appearance can be given the 
system of inequalities which defines the division of the received 
oscillation space. 

Region of null signal X_ 

.-f;[r(*;.sJ)-f(<.BJ)jp(i<)A(8J)+ 
1=1 . 

+ P(s,)r(S;, s0)<P(s0)r(s0\ s.) (/=1, 2,...,m).       <2-18> 

Region of arbitrary non-null signal X 

.     2[r(s;,s/)-r(s;,s<)]P(s/)A(si)+      . 
, ; *=• .   .     • 

;       -j-P(So)r(S;, s;)>P(s,)r(s0, s0), (2.19) 

J>(S/\ s,)-r(S;, s/)lP(s<)A(s/) + P(s0)r(S;, s0)^. 

m < 

> S fr <S* • si> - r (so • 8<>1P (si) A (S/) + P (8«V <S* • S») (2.20) 
(A=l, 2 m; *^/). 

The optimal decision algorithm obtained, based on the general optimality 
criterion, is fully applicable if for all real operating conditions the 
value functions r(s*, s.) and the a priori distribution P (s*) are defined. 

However, in most cases this definition is lacking. First of all, the 
so-called "a priori difficulty" [8] occurs, which consists of the absence 
of enough a priori data to define the function p(s). Second, statistical 
theory assumes the value function r(s*,s) to be given, and does not deal 
with selecting it. The value function r(s*,s) can in principle be 
defined (albeit not uniquely) based on the specific tactical conditions 
under which the system is used. In this case the function r will be 
different for different systems and for different operating conditions 
of the same system. On the other hand, as the function r changes, the 
meaning and results of the decision may change significantly.  If the 
objective is to reduce theory to analytical formulas for system performance 
indicators, it is necessary to investigate systems with a specifically assigned 

mi 
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value function, instead of operations with the function r in general 
form. 

Different optimality criteria which are encountered in solving 
practical problems are usually special cases of criterion (2.4) and 
(2.1) with various assumptions regarding the functions p(s) and r(s*,s). 

We note that the minimax method employed in game theory [1,55,62] does 
not allow the "a priori difficulty" in radar to be overcome satisfactorily. 
According to this method, the observation process is viewed as a game 
between an observer and nature. The value function provides a quantitative 
measure of the result of each realization of the game. It is assumed that 
nature selects a strategy which is least favorable for the observer, i.e., 
the function p(s). With this assumption, based on Bayesian criterion 
(2.1) or (2.4), the observer chooses his strategy (decision making rule). 
Under actual operating conditions, the a priori distribution may differ 
significantly from the least favorable distribution. Accordingly, the 
decision made by the observer will not be the best ones.  In statistical 
radar theory, the minimax method should be viewed as one possible, rather 
arbitrary method for assigning the lacking a priori data required in 
order to use the Bayesian criterion. 

In accordance with existing engineering practice, we limit ourselves in 
practical applications to the Neumann-Pearson criteria and an ideal 
observer. 

The ideal observer criterion [18, 26, 62], which provides the maximum 
average probability of making a correct decision 

P=|;P(S/)P(S;IS1)= ffiax> (2.2D 
(-0 

is obtained from general optimality criterion (2.4), if we assume1 

r(s'r  s,)^, ' (2.22) 

where ö.. — Kronecker's symbol 

• '''HJ Ski: (2-23> 
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After assumption (2.22) is made, there still remains a fundamental 
difficulty which is associated with the ambiguity of the a priori 
distribution.  The simplest way out of this difficulty is to assign 
an arbitrary, but sufficiently likely a priori distribution, such 
as a uniform distribution 

' (2.24) 
/>(s0)=l-n, 

where ]i — probability of presence of non-zero signal, which must also 
be assigned. Then the systems of inequalities (2.18) and (2.19), which 
determine the separation of the space X into different decision regions, 
take on these forms: 

— region of null signal X_ 

A(Sj)<L=±m(/=l, 2,..., m),   . (2.25) 

— region of arbitrary non-null signal X.(i=l,2,...,m) 

•'*   . „      . , ..." (2.26) 
A (s^>A ty) (/—I, 2,...,m; /^0V 

The decision rule based on the Neumann-Pearson criterion leads to a 
similar result.  The Neumann-Pearson criterion-is usually defined 
for the two-alternative situation. We shall introduce an analogous 
definition for the case of an arbitrary number of alternatives. 

We shall assume that according to the Neumann-Pearson criterion it is 
necessary to maximize the average conditional probability of making a 
correct decision with respect to non-null signals  , * 

■7s-2jP(s'|Si) 

- <=i 

assuming that the false alarm probability is equal to some given quantity 
F. The formulated criterion can be written analytically as follows: 
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P=A0p(s;isj+|;p(s;is/) = 

m 

=J" A0p (x/st) dx -f- £] j /? (xfo) dx = ta 
£ * (2.27) 

cax 

assuming that 

J p(x\st)dx=l-F, (2.28) 

where i\n — an arbitrary constant coefficient. 

According to the above, of all of the possible algorithms for dividing 
the received oscillation space X into regions XQ, X^..., Xm> the 

greatest value of the sum in (2.27) occurs when the definition of the 
arbitrary region X. of a non-null decision s* consists of the system of 
inequalities 

A(s,)>A„ 

A(s|j>A(s/)'(y=l, 2,...-, m, i^i), (2-29) 

and the region X of the null decision s* is determined through the 

system 

A(s,)<A, (/=!, 2, I... m). (2.30) 

As A  varies from 0 to » the region XQ varies from 0 to X, the false 

alarm probability accordingly varies from 1 to 0. We select the quantity 
A  such that (2.28) occurs, i.e., such that the probability that system 

(2.30) will be satisfied when the null signal s is input is exactly equal to 
the assigned quantity 1-F.  The coefficient AQ thus defined will be called 
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the critical (or threshold) level of the likelihood coefficient. 

Systems of inequalities (2.29) and (2.30), assuming that the coefficient 
A     figuring in them is the critical level of the likelihood coefficient, 

facilitate simultaneous satisfaction of equations (2.27) and (2.28), and 
provide the sought separation of received oscillation space X into regions 
X-, S1,..., X .  Dividing the space X into any other regions X',..., X' 

makes the sum of (2.27) smaller, and consequently reduces the quantity 
m 
V P(s* Is)        since the first term AnP(s*|s-) must remain unchanged. 
1=1 

The Neumann-Pearson criterion cited above is obtained from the general 
optimality criterion (2.4) if we introduce the following initial assumptions: 
condition (2.22) and a uniform distribution of a priori probabilities 
(2.24) with a probability of occurrence of a non-null signal of 

m 
S+3? ■ <2-31> 

Thus, from the practical viewpoint it is completely irrelevant whether 
assumptions (2.24), which are arbitrary to some extent, are assigned with 
respect to the a priori probabilities when the ideal observer criterion is 
used, or whether the Neumann-Pearson criterion is used, which is also 
based on an arbitrary false alarm probability.  In both cases the division 
of the received oscillations space is determined by systems of inequalities 
of the form (2.20) and (2.30). We note that when there are specific data 
concerning the a priori distribution and substantiated considerations 
regarding the choice of value function, allowance must be made for them in 
defining the decision making rule. 

2.4.  Real Lines 

We shall modify general optimality criterion (2.1) somewhat.  We first 
establish the following correspondence: 

= J/(S\ 8)/>(sVs)rfs'=f/(s\s)/>(x/s)rfx,- (2.32) 

where f(s*,s) is an arbitrary function of s* and s, Xis the region in 
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space X which is uniquely mapped onto the region O* of space S* by using 
the operator of system (2.5). In order to prove (2.32) we partition the 
region a*  into elementary regions with volume As*. We assume that sg G a*. 

We give each elementary region a corresponding ordinal number 1, 2 m. 
In any elementary space, say the jth, the function f(s*,s)p(s*/s) can be 
assumed constant and equal to f(s*,s)p(s*/s), where s* is an arbitrary 

J J J 
fixed value of the variable s* in the jth elementary region. Then 

m-voo v /=j ) 
p„ — Uii v 7,/i», f s)Pis, /S)asv. (2.33) 

Designating X. the region of space X corresponding to decision s*, and 

keeping in mind that 

^(s;(/s)4s'=J/;(x/s)<fx, (2.34) 

we obtain 

Pa==lä{Slf{s',s)/'(x/s)'/x} (2.35) 

The latter is transformed directly into the expression in the right part 
of correspondence (2.32). 

Based on (2.32) and (2.2), 

f / (s-, s) J(s7s) rfs- = / (s;, s) P (s;/s) + f / (s-, s) p (sVs) ds* = 
T. (2.36) 

=j/(S;, s)p(xls)dx+  j /(s\ s)p(xfs)dx= 

= w(s#, s)/>(x/s)rfx. 
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Accordingly,   criterion  (2.1)   can be represented in the form 

P=fdxjrfs/'(s\ s)/?(s)/?(x/s) = extremutn. (2.37) 
x 

s 

We shall assume, as above, that the optimality criterion consists of 
maximizing the quantity p. Then as the oscillations x arrive the 
decision which must be made is s*(s* 6 §*), for which 

x x 

y (Sx . s)p(s) A (s)ds = sup f f r (s% s)} (s) A (s)rfs ],        (2.38) 

s . 

where sup[<j>(x,s*) ] designates the greatest value of the function <j>(x,s*) 
taken for a given x with respect to all possible s*. 

The solution obtained for the problem of defining an optimal system 
in terms of a criterion of the general form (2.1) can be written with 
the help of system operator (2.5) in a fashion analogous to that used 
for simplified lines: 

s; = s; for xe*x. (2.39) 

where X '— the set x (defined for every value of s* from decision space 
X X 

5* on which equation (2.38) is satisfied. 

The attempt to use the general solution of problem (2.38) encounters the 
same difficulties which were mentioned in the preceding section. 
Accordingly, it is again necessary to employ special types of criteria 
based on certain assumptions. A large number of more or less sensible 
optimality criteria can be proposed for t^he detection process in a real 
line. We shall limit ourselves to two criteria, which are continual 
analogs of the Neumann-Pearson and ideal observer criteria.  The physical 
meaning of the criteria is retained, and by substituting (2.3) they are 
transformed to the corresponding optimality criteria for a simplified line. 

40 



The Neumann-Pearson criterion, which equipment developers consider to be 
most applicable, can be defined in generalized form by the equation 

p=A0P(s'/s0)-{-f(
,8(s — S')p($*/s)dsds'=  max (2.40) 

SS»      ' 

assuming that 

^p(x/s9)dx=l-F.    .- <2-41> 
x. 

The nature, of the optimality of criterion (2.40) is that for a given 
false alarm probability F the mean conditional probability density 
of making a correct decision is maximized: s*=s 

T—fb(s7s)ls.=srfs= max. 

Based on the above proof, and keeping in mind that s*=s, (2.40) can be 
transformed into 

P=f A,p(x/s,)dx-fJ/?(x/s)ix= max- (2.42) 
*o       ■     X—X, 

and the decision making rule formulated as follows. The decision s* is 
made if for all s G S 

(2.43) 
A(s)<A,. 
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The critical level of the likelihood ratio A. is selected such that the 

probability that inequality (2.43) is satisfied assuming realization of 
the event sn is exactly equal to the assigned value 1-F. 

The decision s* that a signal with parameters s is present is made if 
x x 

A (8,) = sup [A (s)]. .   (2'44> 
s 

Analogously, we define the ideal observer criterion for a real line 

P = P (s.) P (s)/s,H- J f 8(s* - s) p (s) p (s'/s) rfsrfs- = 
SS' 

s=sjP(*,)PW*.)dx-{-   f p(s)p(x/s)dx 
*• x-x. 

(2.45) 
max:. 

The nature of the optimality of this criterion is that the mean (with 
respect to the a priori distribution) probability of making a correct 
decision is maximized. With a uniform a priori probability distribution 
criterion (2.45) again leads to expressions of the type (2.43) and (2.44). 

During the radar observation process the situation is often encountered 
in which the signal (target) is detected reliably, and it is required only 
to provide the most accurate possible estimate of the parameters of the 
detected signal.  Obviously, in this case it is best to use the estimate 
for the minimum mean square error, which is designated 6 below, setting 

r(s\ s) = (s'-s)» H />(s-0) = 0. (2.46) 

in (2.1). 

In this case optimality criterion (2.1) takes on the form 

p = ß»=f^(s)rfsf(s._s)./7(s./s)f/s.= m.n        (2<47) 
5    s» 

or 

p = 5« = f p (x) dx J (s - s')*p (s/x) rfs = min , 
(2.48) 
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where p(s/x) is the conditional probability density for the set of 
useful parameters s, which is called the a posteriori probability 
function 

P (S/X) = - p(x) W) 
  (2.49) 

According to (2.48), when oscillation x arrives at the system input 
a decision s* must be made which satisfies the equation 

x 

j" (s _ s; y p (s/x) rfs=inf [J (s-s? p (s/x) rfs]. (2.50) 

The number inf[d>(x,s*)] indicates the smallest value of the function 
s* 

<()(x,s*) taken for a given x with respect to all possible s*. 

2.5. Discussion of Results and Definition of Object of Investigation 

In all cases, regardless of whether a real or simplified line is 
employed, and regardless of the optimality criterion selected, the 
optimum receiver output can consist of the likelihood coefficient. A(s) 
or any other function of the set of useful parameters Y(s) which are 
mutually unique with respect to A(s).  Furthermore, the circuit of 
the optimum receiver is always defined by identifying the operations 
required to form from the received oscillation x(t) an arbitrary 
mutually unique likelihood coefficient function.  In particular, we 
can emphasize that the problems of designing a_ receiver for maximum 
accuracy [criterion (2.47)] and for maximum detection reliability 
[criteria (2.21), (2.27), (2.40) and (2.45)] are identical. We also 
note that for simplified lines the output A(s) is sufficient, while 
the necessary optimum output of the receiver is a discrete sequence 
of values of A(s) for fixed values of the parameter s: s-^s^..., sm- 

The decision making rule in the decision device is defined for the 
selected receiver output, and depends upon a number of factors: the 
type of line (simplified or real), the a priori probability distribution 
p(s) and the optimality criterion selected.  It can be stated that by 
freeing the receiver to a substantial extent of the need for making 
allowance for initial assumptions, we transfer all of the responsibility 
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for their selection and consideration to the decision making rule in 
the decision device. 

The decision making rule for a real line consists of the following for 
the cases of greatest practical interest [criteria (2.40) and (2.45)]. 
The critical level of the likelihood coefficient A_ (or critical level 

of the output Yn) is established.  If the likelihood coefficient A(s) 

in the working interval of S does not exceed A- at any point, it is 

decided that no signal is present.  If A(s) exceeds A~ on some set of 

points, it is decided that a signal is present with parameters s , 

corresponding to the point with the highest value of the function A(s), 
i.e., the maximum likelihood point. This decision making scheme 
during the detection process can be called a threshold-type scheme, 
since some function of the set of non-null decisions is compared with 
a threshold (critical number). 

When the general optimality criterion (2.1) is employed, the decision 
making rule can also be reduced to a threshold scheme.  In order to do 
this, we must form the function £(s*) of the set of non-null decisions 

" S (8*) = J [r (s\ s) - r (s*. s)] p (s) A (s) ds + 
S (2.51) 

-fP(s0)r(s\s0) 

-and define the critical number E„ 

£. = /5(So)/-(s;,s0).  - (2.52) 

A decision is made that no signal is present when E(s*) <_   E_ on the 

set of all non-null decisions.  Otherwise it is decided that a signal is 
present with parameters corresponding to the point S* at which the 

function E(s*) reaches its greatest value. 

If the cost of a miss for all signals is the same 

l '00» • s„, 
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and the risk of all false alarms is the same 

,l,/,J-U *■=.;. 

it is best to employ, instead of (2.51) and (2.52), 

2(s') = J[r(s-, s)-rJp(s)A(s)rf>- 

and - 

•  .^, = [r.,-rs0]P(s,). 

Simplified lines are a special case [with condition (2.3)] of real lines. 
Therefore, the decision algorithm in simplified lines can be obtained 
from the corresponding decisions for real lines by using (2.3). 

Changes in specific operating conditions lead to changes in the a priori 
probabilities P(sQ) and p(s), and may also be accompanied by change in the 

risk function r(s*,s). Therefore, when the operating conditions change 
the threshold level ZQ must be changed, and perhaps certain other parameters 

of the decision devices employed in automatic radars as well.  In non- 
automatic radars the information output by the receiver is passed 
directly to a human observer, rather than to a decision computing device. 
The operator makes independent allowance for specific operating conditions 
(risk function and a priori probabilities) in accordance with his 
experience and training. The study [16] cites a typical example of how 
a ship's radar operator will approach the evaluation of the information he 
receives differently depending upon whether the radar is operating on a 
stormy night near the shore or on a clear day in the open ocean.  It is 
important for the radar designer that the definition of the optimum 
receiver remain the same in this case as well.  In other words, the 
circuit of an optimum receiver does not depend only upon specific 
operating conditions, but also upon whether the radar is automatic and 
whether decisions are made by a human observer. 

It is assumed in general below that the system incorporates a decision 
device which operates on the basis of the generalized Neumann-Pearson^ 
criterion, although this criterion is not the best one for all operating 
conditions. 

When the parameters of the detected signal are estimated on the basis of 
the minimum mean square error criterion, the decision rule is to use as 
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the estimate, as follows from (2.50), the "center of gravity" point of the 
a posteriori probability function p(s/x) or the function p(s)A(s).  For 
this reason, the signal parameter estimates obtained for detection based 
on the Neumann-Pearson and ideal observer criteria have the minimum possible 
mean square error only when the maximum likelihood point coincides with the 
"center of gravity" of the function p(s)A(s). 

We have represented the radar observation process as an experiment whose 
outcome is random, which makes it necessary to choose between competing 
hypotheses and to estimate certain parameters of the observed set of 
random quantities x.  The subject of our study will be optimal circuits 
and those performance indicators of radar systems whose theoretically 
limiting values are bounded by the statistical nature of the problem 
resulting from the occurrence of interference. These performance 
indicators include the threshold signal or threshold signal/noise ratio, 
the accuracy with which the useful signal parameters are estimated and 
the resolution. 

The threshold signal/noise ratio is the minimum signal/noise ratio required 
for the system to operate with the required reliability.  The quantitative 
measure of reliability is, in general, the mathematical expectation p of 
the risk function r.  When the Neumann-Pearson criterion is employed, this 
measure is the maximized mean correct detection probability and a fixed 
false alarm probability. 

The accuracy with which useful signal parameters are estimated is measured 
in terms of the mean square error or dispersion of the estimates. 

Resolution is estimated by the dimensions of the region in the useful 
parameter space S such that it is practically impossible to resolve two 
signals with useful parameters belonging to that region. 

Statistical interpretation of the radar observation process makes it 
possible in principle to discuss and solve a broad group of problems 
involved in radar theory.  These problems include the following: 

1. Optimum methods for processing received oscillations in receiver 
(optimum receiver circuit). 

2. Optimum decision making rule (optimum decision device circuit). 

3. Quantitative estimate of potential capabilities of radar systems in 
terms of basic performance indicators. 
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4. Influence of parasitic parameters on potential capabilities of 
system and on optimum processing circuit. 

5. Rational choice of radar signal form. 

6. Influence on system performance indicators of deviations from 
optimum of processing method and decision making rule. 

The investigation below is limited to examining the most practically 
important case — that of reception against the background of 
additive random interference. The analytical expressions for the 
functions p(x/s) and A(s) which figure in the calculations are defined 
as follows. The probability density p(x/s,u) of the quantity x, assuming 
that the signal 3(t,s,u) is input, is obviously the same as the 
probability density of the interference p(n) if the value of the 
interference n(t) is assumed to be 

n(l) = x(t)-s(t,s,u): (2'53) 

Thus, for the class of random interference whose probability distribution 
is defined through (1.79), 

/>(x/s, «) = feexp|-^j[x(0->s(/. s. u))*dty (2>54) 

where (t ,t„) is an arbitrary interval which includes the time interval 

on which the function 3(t;s;u) is non-zero. 

Analogously, assuming the realization of the event sQ, 

t, 

p (x/s.) = A exp^J*1 (<)<«[. (2.55) 

and the likelihood coefficient A(s,u) for the set of useful s and 
parasitic u parameters of the signal will be 
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AM)=^=exP(-l{^(U.«)<// + 
(2.56) 

The likelihood function p(x/s) and the likelihood coefficient A(s) 
of the set of useful parameters are obtained by statistical averaging 
of (2.54) and (2.56) with respect to all possible values of u 

.   p(*M = $p(u)p(x/s, u)du, (2,57) 

A^s=^^J/'(«)M«.«)rf«. (2.58) 

We note that according to (2.58) it is completely impossible to relieve 
the receiver of the need for allowing for a priori data, since formation 
of the likelihood coefficient A(s) requires that the a priori distribution 
of the parasitic parameters p(u) be available or given. 

In order to simplify the investigation and establish separately the 
influence of each of the factors on the radar observation process, we 
shall begin our study with the simplest cases, and gradually make the 
circuit more complex as we draw nearer to real operating conditions. 

Chapter 4.  Estimation of Signal Parameters 

4.1.  Discussion of Problem and Methods for Solution 

The problem of estimating signal parameters, which arises in radar as 
well as related areas of electrical engineering — radio navigation, 
radio remote control, radio telemetry, among others — is formulated 
as follows.  It is well known that the oscillation x(t) which arrives at 
the input of a receiver consists of an additive mixture of interference 
n(t) and signal s(t,s,u), the set of useful parameters of which s belongs 
to the interval S.  Given, or defined by introducing certain assumptions, 
are the a priori distribution functions of the useful and parasitic 
parameters p(s) and p(u), as well as the probability density functional 
p(n) of the interference n(t).  The problem calls for defining the system 
operator (processing circuit and decision making rule) which guarantees 
the best (in terms of mean square) estimate, and calculating the numerical 
characteristics of the parameter sampling accuracy — the mean square errors, 
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One more initial condition must be added to this general statement of 
the problem for the case of sampling the parameters of radar signals. 
The problem of the most accurate possible sample of the signal parameter 
arises after the fact that a target is present has been registered 
reliably. We can therefore assume that when the parameters are 
sampled the signal is significantly stronger than the interference 
(q2»l), at least by enough for reliable target detection. We note 
that there is no limit placed on the input signal/noise power ratio. 

The latter condition is significant.  The output Y(s) on the set of 
possible decisions contains a large number of isolated maxima (spikes), 
one of which is caused by the signal-noise mixture, with the remaining 
being caused by interference alone. If the signal energy is too low, 
there is ambiguity in the detection and sampling — any large interference 
spikes on the interval S may be interpreted as a spike caused by a signal, 
since the presence of a signal has been stipulated in advance. Under 
these conditions, it is meaningless to solve the problem of radar signal 
parameter estimation accuracy. 

The problem of estimating signal parameters and the problem of signal 
detection have a common statistical model, which was described in §2.1. 
The difference between the estimation problem and the detection problem, 
which also accompanies parameter estimation, consists of differences in 
the risk function and in the initial assumptions with respect to the 
a priori probabilities, which essentially reflects a difference in the 
tactical content of both problems. The problem of parameter estimation 
is usually associated with the target tracking process or with the process 
of observing the trajectory of a detected target. 

The second chapter examined the problem of parameter estimation in very 
general features. The optimal system operator was defined, and analytical 
formulas (2.47) and (2.48) for mean square errors were presented.  If the 
estimate of s* is obtained in expressions (2.47) and (2.48) by applying 
the optimum operator, these expressions determine the theoretically 
limiting or potential mean square errors. 

The objective of the continued investigation in the present chapter is 
a) to establish certain general regularities which occur in estimating 
radar signal parameters; b) to analyze potential mean square errors; 
c) to define a method for constructing practical circuits for obtaining 
best estimates. 

For definition we shall assume that the set of useful parameters s consists 
of the two scalar parameters a and 3 
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*s = (a, ß)     and  ds — dad^. . (4.1) 

Instead of the mathematical expectation of the square of the absolute 
value of the error vector defined through (2.47) and (2.48) we shall, 
in accordance with practical requirements, be examining the mean square 
errors^ 62> and ^<$o^ of the estimate of each of the scalar parameters 

a and 3•  The optimum system must simultaneously minimize the mean square 
values of both of the error vector components a-a* and 3-3*  ( a* and 
3* — estimates of the parameters a and 3), i.e., it must simultaneously 
minimize /<52^ and (<5ß). When necessary, the discussions below can be 

extended to sets of large numbers of useful parameters. 

There are at least two possible different methods for calculating mean 
square errors. The first method is based on representation (2.47), in 
accordance with which the mean square errors <6 > and (fin}    are defined 
by the formulas 

<*I > = 1 P (s) ds j p (s'/s) («' _ a)* ds-, 
s s* 

(hl) = $P(s)ds\p(s'M (p'-p)Vs'. (4.2) 
S' 

The structure of the set S* is the same as that of set S.  The analysis 
is done as follows. An ensemble of cases is examined in which the 
received oscillation x(t) represents the sum of interference n(t) and 
signal with fixed values of the useful parameters a and 8 or s. The 
estimate s*=(a*,3*) obtained by applying some operator, not necessarily 
optimum, is random.  The conditional mean square errors are first defined 
for a fixed value of s=(a,3) 

C»I j, = J («'—«)* /»(»7«) ^. 
*• (4.3) 

1^ J. = I <P" — P>' J»   **»% 

after which averaging is done with respect to s 
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(s:>=f^(s)[^]A'(^ = J>(s)[8j}srfs. 
s s 

(4.4) 

If for all s G S the errors [62] and [6*] are independent of s, then 
OC S       P s 

(82a)-[8lJ8.(8p) = I8j]s (4.5) 

and there is no need to average in (4.4). 

The result, of course, remains unchanged if, fixing both the useful 
parameters s and the parasitic parameters u, we find 

[52i =f (a*-a)'/>(s7s,.«)ds\ 

I«! i. = j,(r-»'"/»(■*/■• «>*/ 

after which we average with respect to s and u. 

The second method for analyzing mean square errors is based on 
representation (2.48), according to which 

(6* > = J p (x) dx [ (a -7 O* P (s/x) ds, 

<6| > == | /> (x) dx j (p — p->- /? (s/x) rfs. 
(4.6) 

An ensemble of cases is examined in which, regardless of the useful 
parameters s = (a,3) of the "transmitted" signal, the input of the 
receiving device receives the same oscillation s(t), so that the same 
estimate s*=(a*, $*) is obtained. The conditional mean square errors 
are first determined for fixed values of x and s* 
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KI=1 («-^o V(s/X)ds, 

l8?)x=I(ß-ß,),/'(s/x)fifS, 
(4.7) 

after which we average with respect  to x 

<fi*>=j PWiihdx, (Sj)=j./;(x)[8j];rfx. (4.8) 

If the errors [62]  and [6ß]  are independent of x, 
U X p X 

(O.-tffctf^PU (4-9) 

and it becomes unnecessary to average in (4.8).  It was essentially this 
statement for which Kotel'nikov [18] solved the problem for signals 
containing one useful parameter and no parasitic parameters.  This 
analytical method is also employed in [8, 15], but without sufficient 
foundation.  The investigation below shall employ both methods for 
calculating mean square errors.  In practical calculations preference 
will be given to the first method, which produces comparatively simple 
analytical expressions. 

In some studies [31] the calculation of limiting accuracy reduces to 
calculating the dispersion of the effective estimates.  Kramer [19] 
presents a proof that when there is one scalar random parameter a the 
mean square error in its estimate, corresponding to the quantity [<5 ] , 

which we defined by means of (4.3), is bounded from below by the number 

a^-^r-s n     - (4.10) 
f [■^i"p(*/a)\tpWa)dx 
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It is assumed that the derivative figuring in formula (4.10) exists, and 
that the estimate is unbiased, i.e., 

, .v (4.11) 
(<* ) = a, 

and that the error dispersion can be examined instead of the mean 
square errors. 

The estimate a* for which the dispersion reaches the smallest possible 
value defined by the formula cited above is called the effective estimate. 
An effective estimate exists [i.e. (4.10) as an equals sign] when and only 
when these two conditions are satisfied: 

a) p(xla) = <f(x)p(ala), «-12) 

where p(a*/a) is the distribution function of the estimates for a given 
fixed value of a, cf)(x) is an arbitrary function of x; 

6) -gUn(/7(a7a) = *(«•-<*), (4.13) 

where k is a coefficient independent of a*, but which may depend upon a. 

When there is a large number of random parameters a, $,...   there are 
analogous, but more complicated, formulas for the dispersion of the 
effective estimate and for the existence condition of effective estimates. 
It follows from the very nature of conditions a) and b) that effective 
estimates can be expected to exist only in certain special cases. 
Therefore, when investigating an arbitrary system intended for sampling 
random parameters, analysis of the dispersion of the effective 
estimates by formulas analogous to (4.10) still do not provide the values 
of the dispersion of the actual estimates, or even the theoretically 
limiting dispersion of the estimates for the system in question. 

The estimates (a*, 3*) can be obtained through various methods which, 
in the general case, yield different deviations from the theoretically 
limiting estimates.  The most important of the possible estimation methods 
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is the maximum likelihood method, according to which the estimate 
(a*, (3*) is the point at which the a posteriori probability function 

p(a, ß/x) or, if the a posteriori distribution of p(a,ß) can be assumed 
uniform, the likelihood coefficient A(a,ß), reaches its maximum value. 

The estimation method formulated above coincides with the decision making 
rule presented in §2.4. This method is important because in all cases in 
which an effective estimate exists it can be obtained by the maximum 
likelihood method [19]. Another advantage of the maximum likelihood 
method over many others is the fact that the maximum likelihood point is 
invariant with respect to arbitrary mutually unique transformation of 
the output. This makes it easier to construct the processing circuit for 
obtaining the maximum likelihood estimate. 

4.2. General Principles of Parameter Estimation 

In order to study some of the principles occurring in the estimation of 
radar signal parameters, we shall employ a method for calculating mean 
square errors in which an ensemble of cases with a fixed value of the 
received oscillation x(t) is examined. 

The a posteriori probability density for the useful parameters p(a,ß/x) 
is 

p(A, Vx) = kxp(a, p)A(a,  p), (4.14) 

where p(a,ß) and A(a,ß) represent the a priori probability density and 
likelihood coefficient for the useful parameters, and k is the 

proportionality coefficient, which in general depends upon the received 
oscillation x(t).  The numerical value of the coefficient k can be 
found from the normalization conditions 

JJ/>(a. ß/x)</adß=xl. (4.15) 

When estimating signal parameters under reliable detection conditions 
we are interested in the behavior of the function p(a,ß/x), and consequently 
the function p(a,ß), only in the vicinity of a powerful spike caused by the 
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presence of a signal. We shall call this region the vicinity of the 
estimate and designate it a. Obviously, it can almost always be 
assumed that the distribution of p(a,ß) is near-uniform in the vicinity 
of the estimate. Accordingly, we shall assume below 

/>(«. P/x) = VA(«. ?)• (4.16) 

When a priori information is available which can modify a posteriori 
distribution (4.16) significantly, it must be allowed for by 
substituting the basic expression (4.14) for (4.16). 

A decision device based on studying the output Y(a,ß), which is a 
mutually unique function of the a posteriori distribution (4.16), 
outputs in some fashion the estimate a*, ß* obtained.  The conditional 
mean square errors for given values of x(t) and (a*, ß*), according to 
(4.7), are 

lÄÜ], = lf(«-*,)V(a. ß/x)<Wß, ' 
(4.17) 

In examining expressions (4.17), we can reach some practical conclusions. 
If the signal contains several random parameters, such as the parameter a 
and others, the mean square error in the estimate of the parameter a is 
independent of whether this parameter is estimated in conjunction with the 
others, or if all of the other parameters are perceived by the system as 
parasitic and information regarding them is destroyed during the processing 
(by integration). 

2i 
x For every given value of x the minimum possible value of the errors [<S ] 

and [6Q] , and consequently of the mean square errors, (4.8), is obtained 
p x 

when the estimates of the parameters are the coordinates of the "center of 
gravity" a , ß  of the a posteriori distribution p(ct,ß/x). The latter, 6    J      eg' Kcg 
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of course, is the same as the result obtained in the second chapter, if 
we use as our basis the minimum mean square of the absolute value of the 
error vector. 

The best estimate of the useful parameters, which has potential mean 
square error, is thus the estimate with respect to the "center of gravity" 
of the a posteriori distribution. 

The estimate a*, ß£ obtained by the maximum likelihood method, in the 

general case, in contrast to the estimate a , ß  , is biased, and has 6 eg  eg 
mean square errors which exceed the potential values. The maximum 
likelihood estimate is an unbiased best estimate only when the coordinates 
of the center of gravity and the maximum likelihood points of the 
a posteriori distribution of p(a,ß/x) coincide 

ao=acgVPo=Pcg. (4.18) 

The sufficient condition for ensuring equality (4.18) is the condition of 
symmetry on the plane (a,ß) of the lines of the level of function p(a,ß/x) 
with respect to the maximum likelihood point (a*, (3*).  This condition 
can be written analytically as 

P K.+ % A + P/x)*= P(«a - «" Po - iM- (4-19) 

In fact, when (4.19) is satisfied 

CS s- 

= *l + Jarfaf p<a0' + i, Po + P/x)dP = V 
-a   .   -b 
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since the function 

-b -t 
i:P(< + «. Pi + P/X) 4 = 1 P K - «. Pi - P/X) rff = 

*— b , 
b . 

is an even function of a. The symbols a and b define the intervals of 
variation of the increments a and 3 of the parameters a and 3, respectively. 
The equality of 3£ and $  is obtained analogously under condition (4.19) 

If the a posteriori probability function p(a,3/x) in the vicinity of the 
maximum likelihood estimate (a*, 3£) is analytical, condition (4.19) means 

that it can be represented as the series 

'  ■/>(«. P/x) = Eay(a-0'(P-fi)/:'- -' 
• ■ '•/. S (4.20) 

(/ + / = 2/i; /, /, ft = 0, J, 2,...). 

All of the coefficients a. .of series (4.20) for which the sum of the 
1.3 

powers i+j is an odd number are zero.  Representation (4.20) follows 
directly from the fact that according to (4.19) 

/»(«. p/x)=4-w«J+(■-«;). Po+(P-Po)/x]+ 
. . (4.21) 

+ /»[«B—(«-«„). ft,-(P-P. )/x]}.- - 

We note that in conditions (4.19) and (4.20) above, which are sufficient 
for the maximum likelihood point to coincide with the center of gravity 
of the distribution of p(a,3/x), the a posteriori probability function can 
be replaced with any other function which is unique with respect to 
p(a,3/x).  These conditions, when necessary, can be extended to the case of 
a large number of useful parameters.  Further examination of the question of 
the potential accuracy of sampling of signal parameters requires more 
detailed study of the a posteriori probability function. 
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Of greatest interest for the practical applications encountered below 
is the case in which the signal contains, besides the useful parameters 
a and $, two parasitic random parameters: the initial phase (j) and 
intensity e, i.e., when the received signals are of the form 

«(/. «, P, ?) = aRe{S(/, a, ß)e/(M''+"}. (4.22) 

We also assume that the interference has the nature of white noise, or 
of a normal process with a very wide spectrum, so that the probability 
density functional of the interference p(n) can be represented by means 
of (1.79). 

The a posteriori probability function for all random parameters is 

>(«, p, ., ?/x) = *x^exp 
00 

-£-j *'(/, a, ß, <p)dt + 

00 

"+£ j X{t)3{t, a, p, i)dt (4.23) 

or ' p[a, ß, «, ?/x)s=*,^exp|-..V(a. p)+_ 
00 

—oo 

+
2^L] ^ «;, p;, fi)s(tt a, p, f)ä|, 

_oo / 

(4.24) 

where (a*, ß*, <j)*, eg) is the maximum likelihood point, found from the 

system of equations: 
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In p (a, p, e, <ijx) = f [X (/) - •; S (t, «;, tf0 , fl )1 X 
—00        »   . 

■|-lnp(a, p, B, ?/x) =   j [ A: (0 -«I J(/," aj, p*, ?J )] X 
'      • '   —00 ' 

^-inp(a, p, •, <p/x)= j [* (/)'-«>(/, V Po, ¥o)lX 
—00 ..-..■: 

Un/>'(a, p, e, <p/x)== j [X{t)-»l3(tt a0, pj , <pj )j X 
r-00 

(4.25) 

The second term in the braces in (4.24) can be omitted in the vicinity of 
(a*, 3*).  This possibility is determined by two factors.  First of all, the 

function [x(t) - e* 3(t, a*, ß*, ((>*)] represents interference with the 

minimum possible energy for given x(t) superimposed on the signal. 
Accordingly, the mean square value of the second term for any a and ß 
does not exceed /2q, and under reliable detection conditions is 
significantly smaller than the amplitude value of the third term near 
(a*,ß*). 
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Second, the second term in (4.24) and all of its first-order partial 
derivatives at the point (a*, ß*, <J>§) are zero according to (4.25). 

Furthermore, all of the higher-order partial derivatives with respect 

to (J) are zero as well, since 

t>«rt+* a* 

(/l,.* = 0, I,-2,...). 

(4.26) 

Therefore, when the second term in (4.24) is expanded into a series 
arranged by powers of (a-a*), (ß-ß*), (<M§) only those terms are 

retained which contain the higher powers of the small parameters (a-a*) 

and (ß-ß*). Thus, the second term in (4.24) at the point (a*, 3*) is 

equal to zero, and is very small in the vicinity of that point (the mean 
square value is significantly smaller than /2 q) .  Furthermore, it is 

approximately the case that 

p(a,  p; e,  <p/x) = Ax^-)exp 

2««n (4.27) 

Elimination of the parasitic parameters yields 

pia, p, e/x)=V(e)exPt-6'^(a' wix 

X/.f-Jjl $«(/. «, P)S(/. S.S)* 
L     1—09 

f *{/, a, P)5(/, aj, p;)rf/ 

(4.28) 

(4.29) 
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where-* — a certain function determined by the intensity distribution 
p(e).  For a Rayleigh distribution of the parameter e 

•      L —co 
(4.30) 

XSU, a0, ?a)dt 

Outside the region a, which by definition is the vicinity of the estimate, 
expressions (4.29) and (4.30), of course, cannot serve as an approximation 
of the a posteriori distribution.  However, under reliable detection 
conditions the probability concentrated outside the region a  under the 
functions (4.28)-(4.30), and under the corresponding exact expressions 
for the a posteriori probability function, is negligibly small.  Therefore, 
in order to calculate the mean square errors by formulas (4.17) with good 
enough accuracy for practical applications, the coefficient k can be defined 

by substituting the expressions obtained for the function p(a,ß/x) in the 
vicinity of ,the estimate in normalization condition (4.15).  The coefficient 
k is uniquely defined as a function of the estimate (a*, ß* e*). x 0  0  0 

Our analysis establishes that the a posteriori probability function p(a,ß/x), 
or any other optimal output Y(a,ß) in the vicinity of the estimate a 
always has the same appearance, i.e., it is always some known function (j) 

p{a,  p/x) = <p(a, ß, a*. ß0*, •* ) (4.31) 

of the variables a, ß and the estimates a*, ß*, e*, and does not depend 

directly upon the received oscillation x(t). For signals with fixed 
intensity the parameter e* in the latter expression, of course, must be 
omitted. u 

We conclude on the basis of (4.31) that in the general case the coordinates 
of the "center of gravity" a   ß  of the a posteriori distribution, which 

t-g  eg 
are the estimates with the theoretically limiting mean square deviation, 
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can be represented as  certain known functions §1 and <J>2 of the maximum 

likelihood point   (a*,  ß*,  £*> 

acg= 1J a? <a'   P«  ad •' 'Po » «o ) rfadP = "Pi (ao .Po* • 8o )• 
:S 

•  K„- N P? (*'  P-  ao » Po • eo ) rfadP = *. (ao . Po . 8o )• 

(4.32) 

Therefore, in the general case obtaining an estimate which realizes the 
potential capabilities of the system with respect to accuracy can be 
reduced to obtaining the maximum likelihood estimate of a*, ß*, eg. 

Furthermore, both the useful parameters and the intensity parameters are 
subject to estimation. 

We note also that the dispersion of the estimates a*, ß* is always the 

same as the dispersion of the best estimates a  , ß  , since for every 
eg  t-g 

given value of x(t) it is determined by the dispersion.of the a posteriori 
distribution p(a,ß/x). 

In the overwhelming majority of cases with which we must deal when 
sampling the parameters of radar signals, the absolute value of the 

integral J S(t, a,  p)S(/,a-f-a, $ + ()dt      does not dePend uPon 

the parameters a and ß, but is a function only of the increments a and ß 

J S(t, a,$S(t, a-\-a,  ß-HJÄ = 2Q*V(a,  p). (4.33) 

Assuming in the left part of the latter equality that one time a=ß=0, and 
the second time a= -&, ß= -ß, and keeping in mind that under condition 
(4.33) both substitutions should produce the same result, we obtain 

V(a, ß) = V(-a, -p). v..(4.34) 
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Equality (4.19) which, in turn, leads to (4.20), will hold for a posteriori 
probability functions (4.29) and (4.30). Thus, if the modulation function 
S(t,a,ß) of the received signal for (a,ß)Ga obeys condition (4.33), the 
maximum likelihood estimate (a*, ß*) is unbiased (coincides with the "center 
of gravity" a , ß ) and directly yields the theoretically limiting 

eg  eg 
mean square deviation from the true values of the measured parameters. 

For' cases in which the signal exceeds the interference by a significantly 
greater amount (q2»l) the errors (a*-an) and (ß$-ß) in the sample of the 

signal parameters are small, and regardless of whether or not condition 
(4.53) is satisfied the optimum output Y(a,ß) can be represented 
approximately as the series 

Y(a,  ß) = ln/>(a, ß/x) = aM-f-aM(a-a0
,)« + 

+«.,(?-?;)■ +a„(*-^;)(ß-ßo). (*. »e* (4,35) 

which retains only the terms with low powers of the small parameters. 
The coefficients of the series are independent of a and ß and, under 
condition (4.33), of a * and ß * as well. The possibility of representing 

the function In p(a,ß/x) in the form (4.35), which is equivalent to 
approximating the a posteriori probability function by a normal 
distribution, guarantees the existence of an effective unbiased estimate 
of the parameters of the received signal [19].  In other words, when the 
errors are essentially small the maximum likelihood estimate is nearly 
always an effective estimate. 

Consequently, if condition (4.33) occurs or representation (4.35) can be 
used, the estimates obtained during detection based on the generalized 
Neumann-Pearson criterion or ideal observer criterion are the best 
estimates. 

The conditional mean square errors [62] and [6|] calculated for a fixed 

value of x(t), according to (4.31), depend upon a*, ß*, e*  in the general 

case. Consequently, calculation of the mean square errors^6 / , v5»/ 

in the general case can be reduced to averaging [6 ] and [6R] with respect 

to a*, ß*, £*.  If condition (4.33) is satisfied, expression (4.31) for the 

a posteriori probability becomes the following: 

p(a,  ß/x) = <p(e0\ a-a;, p-pj). (4.36) 
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The conditional mean square errors [5*]  and [<5„]  of the best estimate 
Ct X        p X 

depend only upon the parameter £*. Accordingly, 

and only for condition (4.33) and a fixed intensity of the received 
signals does equality (4.9) occur 

<?.)=?{*.);• <*,)=[*& 

Finally, an important conclusion which follows directly from 
representation (4.31) is that the obtaining of an estimate is not 
necessarily accompanied by reproduction of the output Y(a,3) for all 
values of a and 3 in region O.     Fundamentally, if the output is defined 
in the region a  at three points, such as (a^, 3-^), . (o^^) and ^a3' ^3^' 

the solution of the system of equations 

• ?(ai» P». ao» Po« •o) = y'(ai».Pi)' (4.38) 

1 («•• P.' a0 » Po ' eo ) = Y («I» Pi) 

makes it possible to find the estimate o^*, 3Q* and, when necessary, the 

parameter e *.  When obtaining estimates by solving a system of 

equations here and below we assume, in accordance with real operating 
conditions, that the intensity of the received signal is a parasitic 
random parameter.  Other quantities, such as the derivatives of the 
output, can be employed instead of the output in system (4.38).  It is 
necessary only that for random intensity, which is perceived as a 
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parasitic parameter, the number of equations exceed by one the number of 
measured parameters and that the system have a unique solution in the 
vicinity of the estimate. 

The investigation could have been done in more general form without 
specifying the physical nature of the parasitic parameters. However, 
the practical applications of the theory which are encountered below do 
not require this.  In addition, this would have complicated the 
investigation significantly. 

4.3. Analysis of Dispersion of Estimates Obtained by Maximum 
Likelihood Method 

The preceding section indicated that the maximum likelihood estimate has 
theoretically limiting (potential) dispersion. There is no bias in 
the maximum likelihood estimate, since condition (4.33) is usually 
satisfied, or representation (4.35) can be used. However, even when the 
estimate is biased, allowance can be made for this during sampling. 
Therefore, the potential capabilities of the system in terms of 
accuracy can be determined by the scattering or dispersion of the 
estimates (a *, 3n*) obtained by the maximum likelihood method. 

Our next problem, accordingly, is to obtain more or less simple 
analytical expressions for the dispersion of the maximum likelihood 
estimates (a*, 3*).  It is best to use the analytical method which 

examines an ensemble of received oscillations x(t) with fixed signal 
parameter value. 

It should be noted that dispersion is not the only possible scattering 
characteristic of a random quantity. It is often convenient to use a 
different characteristic.  In the case of a unidimensional random 
quantity a* the concentration or scattering can be characterized by the 

scattering interval (aQ+&     , aQ-*'
!35a). If we replace thfe true 

distribution a* by a uniform distribution over the scattering interval, 

the value of the first and second moment of the distribution remains the 
same. Analogously, in case of a two dimensional random quantity (a*, 3§), 

its concentration about the "center of gravity" of aQ, 3Q is 

characterized by the scattering ellipse 

_L. fij^'  2*ti—»W*-to -[JfrlW'U-A (4 39) 
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where p is the correlation coefficient 

.?»? 
9    *A'        '• (4.40) 

and 62, 6,?, 62„ are the second central moments, 
a' 3  aß 

(4.41) 

If we replace the distribution of the random quantity (a*, 3*) by a 

uniform distribution in the area bounded by the scattering ellipse, the 
value of the first and second moments of the distribution remain 
unchanged.  Obviously, assignment of the matrix of second moments 
defines the scattering ellipse, and conversely.  It is therefore 
desirable to have analytical formulas for the dispersions 6 , 6„ as 

well as for the second mixed central moment 6 _. 

We first assume that there is only one useful parameter a.  Then, 
according to the above definition of the ensemble x(t), it should be 
assumed that 

*(0-»(0 + V('.«ii?i). (4.43) 

where otn, cf>n, en are fixed values of the signal parameters. The 

a posteriori probability function, or its equivalent in the sense of 
information, the output Y(a), is random in this case and can be 
represented as the sum of the mathematical expectation and a random 
function with null mean 

K (a) = (K(i))-{-)>)• <4'44) 
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Here and below the superscript zero indicates deviation of the function 
from the mathematical expectation 

y° (<%) = )» — (Y(a)). (4-45> 

In accordance with the maximum likelihood method the estimate a* is found 
from the equation 

iv«/»l = (l (4.46) ■s^KW+i^'W-o. 

In (4.46) the conventional notation for the derivatives has the usual 
meaning 

_d_ 
da y K)=n«,)="[-£ Y («)]_; 

and replacement of the argument a* with a* in the random quantity 

-5=- Y (a) is justified by the practical equality of the statistical 
da 0 
characteristics of the random process Y (a) at points a* and aQ which 

are close together.  In addition, the process Y (a) can be assumed 
stationary in all of the practical applications examined below. 

Equation (4.46) makes it possible in principle to represent the 
estimate a*, which is random in nature, as a function of fixed values 

A    n 
of the parameters a_, £„ and the random quantity-r—Y (aQ) with known 

statistical characteristics, after which the dispersion of the estimate 
a* can be found. 

In the case of very strong signals the error of the optimal system (a*-aQ) 

can be assumed small, and its mathematical expectation can be assumed to 
be zero.  In this case likelihood equation (4.46) takes on the form 
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K*-«•>;£ <n«.)>+£ HO «o. 
(4.47) 

after which we obtain this expression for the potential dispersion of 
the estimates* 

a  U 0   *' '      \   d* I». (4.48) 

When there are two useful parameters a and 8 it is assumed analogously 
that the received oscillation contains a signal with fixed parameters 
a0' ^0' £0' ^0"  The maximally reliable estimate (a*, ß*) is found from 

the optimum output Y(a,3) by solving the system of likelihood equations 

(4.49) 

--■<nCp;>>+-iH«..fc>=o. d$ \* ^o'V0f/-r-^ 

The solution of system (4.49) makes it possible in principle to find 
expressions for the estimates a* and ß* in the form of a function of the 

random quantities-g—Y (a , ^o^'~9ß"Y ^a0' ^0^ and the true values of 

the parameters aQ, $_, £., after which the scattering characteristics 

of the two dimensional random quantity can be determined. 

* 
Here and below the second central moments of the estimate for fixed 

values of the signal parameters are designated by the symbols 62, <52, 62ß 
without the subscript su. P   P 
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In the case of very strong signals, system of equations (4.49) can be 
written approximately as follows: 

d va. 

■£r'(i
rK.W>+5iOr(«..W>+-|r" <<-«o)-s5r (yK.W>+ÄOr(«..W>+iH«..P.)=0' <4-50> 

We then obtain in explicit form the following expressions for the deviation 
of the estimates: 

(ao   <v——5» d» FI** v' 
17« <n«- P.» df» (K («.. P.» - [-3S5J- o- («.. P.»J 

(4.51) 

a» ä ...  . .  d« ...  . .. d 
A? <r («.. P.))-äjy'K.M-ä^f(^ («.. P.)) 17»..P.) 

da -• a (»•. P.)) -ßj. (^ («.. P.» - [äSf <K («.. P.)> ]' 

In nearly all calculations of the potential accuracy of the signal parameter 
estimate presented below, the optimum output Y(a,3) for a signal with fixed 
parameters oQ, 3Q, eQ, <j>0, in the vicinity of the estimate a*, 3* can be 

represented in the form 

Y (a, p) = ,,o«»jr (a - o„ p - ß0) + a» (a, ß). (4.52) 

where the function Y(a,3) is determined by means of (4.33), with a some 
number, and 6(a,3) a normal and normalized random process such that 

(0 («lf pJO («„ ß,)> = W (a, - a„ p, - pt). (4 # 53) 
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The following relationships followed directly from (4.53): 

([■|re(«.P)]2) = -[S^(«.0)]a=oE-<'(0.0),        (4.54) 

([w^P)]>-[^^(°-P)L=TVi'(°^ (4.55) 

'p=o (4.56) 

By substituting (4.52) and (4.54)-(4.56) in (4.51), after averaging 
we obtain these comparatively simple analytical formulas 

*.  »  Uo  "^ /  i2a»|w;'(0.0)I (4.57) 

6J =* <(P0* - P.)')=,ja. ,w;'(o.o)| r^n. (458) 

8!P= ((ao — ao) (Po — Po» = eW'a(0,0) T=7»'• o  «pv- ; (4.59) 

where 

rt = JV'°)\t (4.60) 
f*.„ _. • X(o.o)i';'(o,o) 

Analogously, when there is a single useful parameter a the optimum output 
can be represented as 

Y (a) = «.a»* (a - «,) + aö (a) (4.61} 

and analytical expression (4.48) can be transformed as follows: 
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When receiving signals with known intensity the parameter eQ in all of the 
formulas should be set equal to 1. 

The mean values ^.62).<<$g> and.^62 > of the obtained scattering characteristics 

62 62 and 62  are determined by statistical averaging of the latter with 
or ß 'aß 
respect to all possible values of the signal parameters aQ, ßQ, £Q,  <pQ. 

When the optimum output Y(a,ß) can be represented in form (4.52), the 
characteristics 62, S2, S^, like the characteristics [6^, [6glx depend 

only upon the intensity parameter when condition (4.33) is satisfied. 
Furthermore, 

<«.2>=I«>(<.)<fc.. (8j)=I^W^. (4>63) 

o 

with an output with the form (4.52) and known intensity of the received 
signals, when p(e)=6* (e-1), equality (4.5) holds 

The method presented in this section for analyzing the error dispersion 
can also be used when the output Y(a,ß) is non-optimal. This capability 
will be utilized in Chapter 8. 

4.4. Method for Constructing Optimal Circuits for Obtaining Estimate 
and Error Signal 

A direct method for obtaining the best estimate is to form the optimum 
output and find its highest point. In many cases, especially when the 
output is a function of several useful parameters, this method for 
obtaining the estimate encounters practical difficulties.  It is desirable, 
using some of the useful parameters, such as the parameter a, to obtain an 
estimate which is as close as possible to the best estimate without forming 
and reproducing the output for all values of the parameter a in the interval 
(a -a  a +a ) of the possible values of that parameter.  It is assumed that 
$ . m' $ m 

the fact of the occurrence of a signal with parameter a belonging to the 
aforementioned interval is established reliably and is not subject to 
doubt, and that a is the position of some fixed point of the system (the 

temporal location of the gating pulses, the angular position of the axis of 
the antenna system, etc.). 
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An analogous situation occurs for the error signal, whose derivation is 
a rougher result of radar observation than the obtaining of a parameter 
estimate. The error signal d is usually defined as a number which must 
be proportional to the deviation of the fixing point a. from a_ — the 

true value of the parameter a. When the reception is done against the 
background of interference, the true value of-the parameter cannot be 
found nor, accordingly, can the deviation from that value be determined. 
The potential capabilities of the system are exhausted by the capability 
of forming an error signal d which is proportional to the deviation of the 
fixing point a, from the best estimate, in the capacity of which can 

serve the maximum likelihood estimate a* 

<* = *(V-«o>- <4'64> 

We shall assume that the proportionality coefficient k in (4.64) is a 
positive random quantity.  If the number k is known a priori, obtaining 
the error signal is obviously a problem which is identical to the problem 
of obtaining the estimate. 

We note that in the general case the error signal on the interval (o^-01 » 

ou+a ) can be expressed through an arbitrary monotonic function (f> of the 

deviation a.-a* 
<p 0 

*=?[*(«»-OJ.  - (4'65) 

Assumption (4.64) instead of (4.65) causes no loss in generality, since 
the error signal d can be obtained from d by employing the appropriate 
one-to-one transformation. 

The present section presents an analytical method for defining optimal 
schemes for obtaining the estimate and error signal based on employing 
and solving a system of equations of the type (4.38). 
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We shall assume that the signal contains two useful parameters a and ß 
The optimum output Y(a,ß), as follows from (4.29) and (4.33), can be 
represented as the series (4.20) 

y («,»=«; 
UU 1 

$5(7^T)S(/,a0*,p;)d/ = 
—oo 

(4.66) 

V 

where 

fl» = 
1 

(i+/)l 

oo  h 

fs(/.a,?)S(/,a;.p;)rf/   . 
»» J«=a0 

(4.67) 

M?o 

The use of assumption (4.33) simplifies the illustration of the method, 

but is not obligatory. 

We shall assume further that the estimate ß* is obtained in some way, 

and that it is required to find the best estimate of the parameter a 
without forming an output for all values of that parameter. In accordance 
with the above, one method for obtaining the best estimate of one parameter 
is to solve a system of two equations. The choice of the system of equations 
for obtaining the estimate can be made in various ways. We shall limit 
ourselves to the class of equations in which one of the equations defines 
the error signal (i.e., expresses the error as a function of the estimate) 
and the other makes it possible to define or exclude the unknown coefficient 
from the first equation.  For example, we can use the following as our 

system of equations: 
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i.e., formation of the optimum error signal consists of multiplying the 
received oscillation x(t) by the function 3'(t,a ) and integrating the 

product obtained.  In order to form the estimate it is necessary to form 
a second number f) or compose a second equation 

®= K(\) =*\  * (t)\(t, aj dt (4.71) 

by performing analogous operations with the function 3M(t,ou). 
a   <p 

The problem of determining an optimum scheme, as well as the problem of 
composing a system of equations for obtaining the estimate, does not have 
a single solution. Another possibility for obtaining the optimum error 
signal and best estimate is, for example, to form two values of the output 
Y(o^+A,ß*) and Y(a$-A,ß*) for the points a.+A,ß* and a -A,ß* offset 

symmetrically with respect to the fixing point.  The optimum error signal 
is then obtained by composing the difference 

d=YK + A>fo)-r(%-*,ti)~2W'jai>tf0), (4.72) 

while an additional equation for obtaining the estimate can be the sum 

*=>>*+A.lO+r(%-AfK). (4.73) 

Keeping (4.66) in mind, we obtain approximately 

a=a        ^"f + ^-HV-Mo)  «00 
°   *  nvf-A.to+nv-A.ft 'lÄV (4.74) 

Consequently, this method for designing optimal systems for obtaining the 
signal parameter estimate consists of the following. Based on representing 
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the optimum output as a function of the maximum likelihood estimate 
(4.27)-(4.39) a system of equations is composed whose solution is the 
estimate. The number of equations n must exceed the number of measured 
parameters by one. When obtaining the estimate of one parameter, the 
error signal as a function of the estimate can be employed as one of the 
equations. Then, returning to the representation of the optimum output 
as a function of the received oscillation x(t), the equations constructed 
are modeled with the help of an electrical circuit. The circuit forms 
n numbers, which define the value of the free terms in the system of 
equations and, consequently, its solution. The numbers formed by the 
circuit are input to the decision device. The algorithm for obtaining 
the estimate in the decision device is determined directly by the system 
of equations selected, and may be very simple, especially if the errors 
are small and representation (4.35) can be used. Practical examples of 
the application of this method for constructing optimum circuits for 
obtaining estimates and optimum error signal formation circuits will be 
presented during the investigation of direction finding systems. 

4.5. Potential Sampling Accuracy of Range Coordinate from Stationary 
Targets -»• 

As our first application of the theory of radar signal parameter estimates 
we shall calculate the potential accuracy of sampling the delay of a 
signal reflected from a stationary target. The only useful parameter is 
the delay time T. The modulation function S(t-x) in this case satisfies 
condition (4.33). We shall assume at the outset that the parasitic random 
parameters §  and e are absent.  Then the optimum output 

Y(,) = ^]x(tMt—)ät (4>75) 

is the high frequency function with slowly varying envelope L[Y(T)]. 
Determination of the maximum point of function Y(x) by solving the 
likelihood equation 

y'(-0 = (£ (*,-«<*<*. + ■) (4.76) 

yields an ambiguous result because of the high frequency carrier. The 
region (T„-e, T-+E) in this case designates the vicinity of the point TQ — 

the true delay time of the reflected signal.  Conversely, we can assume for 
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the envelope of the output L[Y(T)] that in the region (xn-£, Tn+e) the 

probability of the occurrence of more than one maximum is near zero.  For 
this reason, we shall initially seek the maximum point of the function 
Y(T) from the envelope of L[Y(f)], 'i.e., from the equation 

-£L[Y(X)] = 0,  (1,-KKsH;. (4.77) 

after which it will be possible to answer the question as to whether 
the high frequency carrier can be utilized. 

Assuming that 

x(t) = n(t) + 3(t-xt) 
(4.78) 

the expression for the envelope of L[Y(T)], assuming that the signal is 
significantly stronger than the interference, can be reduced to the form 
of (4.61) on the basis of (1.98) 

L[Y(x)] = 2q*W(x-xi)+/2qbiix)^ 

«V[i-T#(»-^'] + /2^W..       (4-79) 

where T(T) is the correlation function of the modulation, ß  is a parameter 

which determines the signal spectrum width by means of formula (1.23), and 
6(T) is a normal random process with correlation function 

(G K) 8 (*,)) = ¥ (t,-,,). (4.80) 

The solution of likelihood equation (4.77) is determined by formula (4.62) 

8:=(K—.),) = 1^- (4.81) 

or 
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52 = dl . 
(4.82) 

J \m\*dt 
—00 

Formula (4.81) was derived by Woodward [8] by calculating the dispersion of 
the averaged a posteriori distribution. 

If the mean square error 6 is significantly smaller than the period of the 

high frequency oscillations of the signal 

I  ^ 1 (4.83) 

Y*<U ^  >•* 

knowledge of the envelope estimate makes it possible to reduce the extent 
of the vicinity of the point TQ in initial equation (4.76) enough to 

eliminate the ambiguity in the solution.  In this case, solving initial 
equation (4.76) under condition (4.78) yields 

6s = ! . (4.84) 

Consequently, if condition (4.83) is satisfied, i.e., if the modulation 
principle and power ratio q2 are such that the _envelope coordinate sample 

eliminates the ambiguity, the high frequency carrier of the signal can be 
used to sample the range.  The potential sampling accuracy is then 
expressed by formula (4.84). Condition (4.83) can be satisfied for 
certain radio navigation and remote control systems. The reverse 
inequality 

1  " ' (4.85) 
V*iU ^ /. 

holds for radar systems, and the potential range sampling accuracy is 
determined by formula (4.81) or (4.82). 
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Thus, even if the initial phase of the received signals is not a 
statistically independent random parameter, and contains useful 
information, this information cannot be used in real radar lines to 
increase the accuracy of the range coordinate sampling, or to increase 
detection reliability.  Therefore, we shall assume everywhere below 
that the initial phase of the received signals is a random quantity 
which is distributed uniformly over the interval 0, 2ir.  This assumption 
also corresponds to actual operating conditions of radar systems. 

The potential range coordinate sampling accuracy in radar systems, as 
follows from the above formulas, depends in the final analysis only 
upon the spectral intensity of the interference n and the total "energy" 

contained in the derivative of the complex envelope 

of the signal.  The accuracy is determined by the parameter ß when the 

signal/noise ratio is given. Therefore, in contrast to the threshold 
ratio, range coordinate sampling accuracy depends significantly upon the 
form of the signals and is the higher, the wider the modulation spectrum 
and the more of the modulating signal energy is concentrated in the region 
of high modulation frequencies. 

We can pose the problem of determining the form of the signal which 
provides the highest sampling accuracy for the parameter x for a given 
signal/noise power ratio q^ and assuming that the signal spectrum stays 
practically within the band (f_-F , f _+F ).  Such a signal is r U m  U m 

3{()=l(t,  r)50cos2itf/n/cos2n/0/, (4-86) 

since its spectrum approximates the form 6(f-f"+F )+6(f-f -F ) and has the 
o 

maximum possible "dispersion" (2irF )*  with respect to f=fri. m v 

However, no matter how high the frequencies F function (4.86) is not 
' m 

suitable for use in the capacity of radar signals. 

Some limitation of the area of application of formula (4.81) must also 
be emphasized.  This formula is valid only for signals above the 
threshold.  As the parameter ß increases the threshold increases slowly, 

but monotonically.  Therefore, for a given interference level NQ it is 

not possible to increase the sampling accuracy without limit by changing 
the form of the signal without changing its power.  Sampling accuracy can 
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be increased in this way only as long as the reliable detection condition 
2 2 q >q ,  is retained.  In addition, formulas (4.81) and (4.82) are based n — thr 

on representation (1.24) and, consequently, are valid only for those 
signals and those intervals T for which the approximate equality 

holds. 

This representation is not applicable, for example, to the frequently 
employed idealization of the envelope of valid signals in the form of 
square pulses with correlation function 

V(x) = (4.87) 
0.     M>V 

In this case, using formula (4.17) for the mean square errors and 
representation (4.28), assuming e=e*=l, we obtain 

»:=*/,j,K-'),'.[v(i-^)]"'- 
0  " 

[*■-(-¥) dx 

H-¥) dx (4.88) 

or . .^ *?, _2Nl 

where S is the amplitude of the input signal pulse. According to the 

above, for the signals in question the dispersion (4.88), like the 
dispersion (4.81), is the same as the averaged dispersion of the estimates 
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The potential sampling accuracy for square pulsed signals depends only 
upon the spectral intensity of the interference and the signal amplitude, 
but not upon the pulse duration.  Expression (4.88) can be viewed as the 
limit which the potential sampling accuracy approaches as the slope of 
the leading edge of the signal pulses increases without limit. 

In order to obtain the final .expressions for the sampling accuracy of the 
range coordinate of stationary targets, we must also allow for the 
occurrence of two parasitic parameters in the received signal: the random 
initial phase <J) and the random intensity £.  In this case, the optimal 
output Y(T) can be the envelope of oscillation (4.75).  Assuming 

JC(0=/I(O+V(/-X„^) (4,89) 

and performing transformations analogous to those which lead to (4.79), 
we obtain 

r^B.V* (■»-■«.)+/MOO <4-90> 

and 

6» = _J__ (4.91) 

As might be expected, in accordance with the conclusions above the 
occurrence of the random initial phase of the received signal does not 
increase the dispersion of the samples of the range coordinate. 

As regards the influence of random intensity, comparison of formulas 
(4.91) and (4.81) permits the conclusion that the potential dispersion of 
the samples does not depend upon whether or not the intensity of the 
received signal is known, but rather upon the intensity £Q2Q of t^e 

signal which is actually received. 

The averaged potential dispersion of the errors<6*) is obtained 
theoretically by statistically averaging with respect to the parameter 
e the dispersion 62 obtained assuming that the parameter £Q is fixed. 

However, averaging cannot be done directly with respect to all possible 
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values of e. of the obtained quantity (4.91), since all of our formulas 

as based on the assumption that reliable detection occurs, and are 
consequently valid only for sufficiently large e^.  In addition, formula 

(4.91) has a perfectly clear physical meaning — it represents the 
potential accuracy for received signal energy of e^-Q2,  regardless of 

whether or not the intensity of the received signal is known while the 
estimate is being obtained. This formula provides a sufficiently good 
characterization of the potential capabilities of the system. Therefore, 
we shall not concern ourselves here and below with seeking intelligent 
methods of averaging the expressions for the dispersion of the estimates 
of various parameters with respect to £«. 

During reception against a background of random interference with 
spectral intensity depending upon frequency (normal correlated interference), 
the analytical expression for potential accuracy (4.91) takes on the form 

1 ~~ 202 B2  t2" 
(4.92) 

The parameters Q   and ß     were defined in § 3.10. N is the spectral 
3KB      T 3KB U 

intensity of the interference at carrier frequency f_. 

Chapter 7.  Azimuth Scanning and Target Direction Finding 

7.1. Azimuth Scanning by Flat Rotation of Directivity Pattern 

It has been assumed up to now that the scanning has been done in one 
fixed direction. We shall now assume that scanning is also done by 
angular coordinate 6 within some arbitrary sector (6  , ®max^' 

which we 

shall assume for definition to be equal to (0,0 ). We shall begin by m 
studying the basic scanning method — that of flat rotation (or rocking) of 
the pattern of the antenna system within the working sector (0, 8 ). 

The (voltage) directivity patterns of the transmitting and receiving antennas 
will be assumed to be real functions of 8 and will be designated YjC6) and 

YTT(8).  The direction of maximum gain of both antennas corresponds to the 

angle 8=0. 

*[Chapter 3 not included in this translation. Tr.] 
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The objective of the investigation is to obtain analytical formulas for 
the threshold signal and for the potential accuracy of the estimate of the 
angular coordinate, which is sampled jointly with the range coordinate. 
In order to do this, we must write the analytical expression for the 
optimum output and study its statistical characteristics in the vicinity 
of the estimate (in the region of high correlation) in a manner analogous 
to that employed in Chapter 5 for signals containing the two useful 
parameters T and $.  The problem of determining the optimum azimuth search 
mode is not dealt with.  It is assumed that the trials are made at fixed 
intervals (the signal has fixed duration).  It is assumed accordingly that 
the angular scanning rate or rotation rate of the directivity pattern is a 
constant quantity equal to GO deg/sec, and that cot is the current angle of 
revolution (angular position) of the pattern.  We shall examine a single 
scan cycle, so that the angular position of the target 

0 = «>'„, (7.1) 

where t is the instant in time or the time offset corresponding to 
A 

rotation of the antenna system through an angle equal to the angular 
coordinate of the target.  Then the function 

*(')T, [«(',-')] 

represents the signal emitted in the direction 6, and the received 
signal which is reflected from the target and whose coordinates and 
velocity correspond to the parameters T, t and $, will be expressed 
by the function 

eY,H',4-f '*-%,, [«(/„-/)JJ(/—*, %  *). (7.2) 

In writing (7.2) it is assumed in accordance with the actual operating 
conditions of radar systems that the target irradiation time in each space 
scanning cycle does not exceed the coherence integral, and that the 
fluctuation in the scanning rate oo caused by movement of the target is 
negligibly small. 
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In theoretical studies it is convenient to approximate the directivity 
pattern of radar antennas by the bell-shaped function 

•,,(!!)= r^expf- 2 in 2- 

*«<*> = v^"\' 

(-21"2T)- 

21n2-V (7.3) 

Here A and A  are the respective pattern widths of the transmitting 

and receiving antennas taken at the half-power level, and k is the 
proportionality coefficient. 

Then the generalized directivity pattern of the transmitting and 
receiving antennas also represents a bell-shaped function 

Y,N',+*-0]Y,, [•('„-')=* 
*» exp — 2 in 2 (<-")• 

X 

A?+AH 
expx 

'„+ A?+A?, ■)' 
(7.4) 

with pattern width 

/Af+A?,' 
(7.5) 
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which corresponds to an effective signal duration of 

2 V   In 2 
h. (7.6) 

The occurrence of a time offset between reception and transmission 
results in an offset of 

vt = • 
A»  - (7.7) 

Ajf + Aj 

between the moment at which the maximum of the pattern is directed 
toward the target and the moment corresponding to the maximum 
amplitude of the received signal, as well as a reduction in the 
resultant gain of the antenna system, which is expressed by the first 
exponential factor in (7.4). 

In order to make it easier to write subsequent formulas, we shall assume 
that the time offset VT in (7.4) is small and can be disregarded.  Then 
the reflected signal takes on the form 

«{/-•t, 9, *, b) = ti[a>(tA-t)]Re{S(t-x)el[2.<i'-*),-2'*t+'ti}t        0.8) 

where y(Q)  is the generalized directivity pattern of the transmitting 
and receiving antennas.  The simplification in writing (7.8) which 
comes about by disregarding the quantity VT is acceptable in most 
cases.  In the more general case the time offset VT can be included in 
the parameter t , which again leads to (7.8). 

The reflected signal is structurally the same as the signals studied in 
the preceding chapters, except for the fact that the time position of the 
function y» which plays the role of cutoff function, depends upon the 
azimuth of the target.  For this reason, further analysis duplicates to a 
significant extent the analysis presented in Chapters 5 and 6.  We limit 
ourselves here to reproducing the order of the calculation, dealing in 
detail only with singular features associated with the occurrence of the 
additional random parameters -- the delay time of the cutoff function. 
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The signal or modulating function S(t) figuring in (7.8) can be any of 
the radar signals examined above, including the sum of some number of 
incoherent elementary signals.  If S(t) is a coherent or incoherent sequence 
of periodically repeating signals S  (t), the modulating function in 
(7.8) will appear as 

s0= S sTu(i-kru~i)e'^. (7.9) 

where £ is a quantity uniformly distributed over the interval |C| f. ^'5T 

and which allows for the absence of synchronization between the rotation of 
the directivity pattern and the modulation.  However, E,  is a parameter of 
the emitted signal which can be allowed for exactly during the processing, 
and therefore must be viewed as a known non-random parameter.  In addition, 
for coherent signals all of the <|>, in (7.9) must be assumed to be equal 
non-random quantities. 

The likelihood coefficient for the parameters T,9 and $, which determines 
the potential capabilities of the system and the optimum processing circuit, 
is expressed by the same formulas which were derived in our examination of 
spatial scanning in one fixed direction. The only difference is that the 
function Y which figures in the formulas for the likelihood coefficient 
presented in Chapters 5 and 6 are now in the general case functions of 
three parameters and have the following appearance: 

— for coherent processing [formula (5.12)] 

. 00 

Y{x,  0, ®) = l|£ J*(0YM/A-0]J('-VT. *)*}      (7.10) 
—oo 

and for incoherent processing of a small number of repetitions   [formulas 
(6.11)  and  (6.15)] 

y(*,o,*)=5]in/.(y4)« 
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We shall assume below that a fixed signal with parameters T-, 6n(tot _), 

$n, en, <f>n is input to the receiver.  Then the outputs (7.10) and 

(7.11) can be represented in a form analogous to (5.26) 

.. jv««pr(x-T„ 6-o0,*-*0)|+wcx(x,o,«6) 
I— within high correlation region, 

A 

(7.12) 

[— outside high correlation region, 

where N  (T,9,$) and n, (x,0,$,<}>) are random processes for which 
ex i 

(NJ\, •». *>)Njxt,  9„ 0»,)) = 
= 2^1^^-*., 0. —8,.*, —©Jli 

(7.13) 

!|,FK-S. OI-OI. *i-*J|cos[2«/,(x1-xJ + 
+ «(,,-,„ *,-*„ 0t —0,) + yi —<p,jr 

(7.14) 

and |f(T,6,$)| and X(T,9,$) are the absolute value and argument of the 
joint (for the parameters T,8,$) complex correlation modulation function 
y(T,8,$). We shall provide the analytical expressions of the joint 
modulation correlation function |Y(T,8,$)| entering into (7.12) for the 
most interesting practical cases. 

In the case of a coherent system for processing the received oscillations 

09 

|V (*, Ö, *)|^Ij" 1 (W)i(»/- 8)S(t) S{f=^el2""dt |.     (7.15) 
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The signal S(t) in (7.15), as a rule, can be represented as the sum of 
harmonic'components. For example, when Doppler signals are used 

S(/) = S0cos2*F/=fsoe'2*"+isoe-'2""       <7-16> 

and direct substitution of  (7.16)  in  (7.15)  yields 

J'F(x, 0, *)| = |cos2«ft| 1*^(0, *)| + 

+-J|VT(»* *-2/01 + ^1^(0, * + 2F)|. (7.17) 

Here and below ¥  (9,$)  is determined by the formula 

V(0, $)=-=~  (7.18) 

JY'M)</< 

and is the joint correlation function with respect to the parameters 
6 and $ of the directivity pattern or cutoff function y(wt). 

For a bell-shaped approximation of the directivity pattern 

Y(8) = *.eXp/-21n2|-V (7.19) 

Furthermore 
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iv. *)i=-p(-'"^)exp(-^)- 
(7.20) 

In the general case, when 

5(/)==E «W'-^J,   • (7.21) 
ft=-00 

employing the notation from § 5.9 

J STH{t)STJH—t)tf>,*,dl 

WT)i(x, *) = = ^ ~ (7.22) 

J \STM'dt 

for the joint correlation function of a signal taken over a single 
repetition period, as well as the notation 

iW^T(-0 (7*23) 

and assuming that the adjacent spectralized T(f-) and T(f+ -—) 
practically do not overlap, we find M 

|V(*.5.*)|^]gJ]jVI(». «I^)^-^. £)|- (7.24) 
i k 

In the working region |T| < T and 

88 



l^.0,*)|=5]|^T(0,*-i-)'FrM(^j 
(7.25) 

For an incoherent system with a small number of repetitions the 
correlation function entering in (7.12) is expressed by the formula 

09 

* -» (7.26) 
XSTJt-kTH-^'™'dt 

Using the same notation and assumptions as in the preceding case, 
(7.26) becomes 

|V(*. 0. ®)l = |^(9, 0)|rFr>,«U)t' 
(7'27) 

Thus, in systems which search (scan) the range coordinate T and the 
angular coordinate $ jointly, the joint modulation correlation function 
|Y(T,9,$)|, which determines the potential capabilities of the system, 
represents the product (or the sum of the products) of the two functions 
¥_ and y , one of which includes the parameter T, and the other — the 
TM     Y 
parameter 9.  Furthermore, the function 4* depends only upon the shape of 

the system antenna pattern, while the function ¥_ depends upon the form of 

the signal.  Because of this, the potential system indicators in terms of 
the angular coordinate 9 depend only upon the directivity pattern, and 
not the form of the signal.  On the other hand, the potential range coordinate 
indicators depend upon the form of the signal, but not the directivity 
pattern. 

With incoherent processing the information about target velocity contained 
in the set of initial phases of the high frequency oscillations with 
different repetition periods is lost.  The only portion of the velocity 
information retained is that which is included in one repetition period of 
the reflected signal.  This physically obvious fact is reflected in formula 
(7.25). 
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The expressions derived for the joint modulation correlation function 
make it possible to determine the region of high correlation in the 
working sector of space (T,8,$), after which the threshold ratio can be 
calculated by the corresponding formulas presented in the preceding 
chapters.  The equivalent number of orthogonal signals (or number of 
resolvable signals) can be assumed to be approximately 

volume of region of variation of useful parameters T>6,$      ,-.  »o\ 
m ~ volume of region of high correlation in working sector of 

space (T,8,$) 

or 

m = mmtm^, (7.29) 

where m , mfl, m, — equivalent number of orthogonal signals (number of 

resolvable positions) along the x,6,and$ axes. 

The extent of the region of high correlation A8, which is a measure of 
azimuth resolution, can be estimated approximately by the correlation 
angle 

AO: A = jj |'F(0. 6, 0)|VS. (7.30). 

For a bell-shaped approximation of the directivity pattern (7.19) 

and 

>F(0, 0, 0) = V (e) = expA-ln2-^-\ 
(7.31) 

(7.32) 
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The problem of determining the potential accuracy of direction finding 
by flat rotation of the pattern for pulsed incoherent systems is solved 
in [31] with a number of additional limitations, specifically, assuming 
that the range coordinate is known.  The determination of the optimum 
output in the region of high correlation which is provided makes it 
possible to estimate the potential angular coordinate sampling accuracy 
in more general form. 

In accordance with the analytical method employed we shall assume that the 
oscillation input to the receiver contains a signal with fixed parameters 
Tn, 9-, $n, £_, <}>_ and that the angular coordinate and range coordinate are 

estimated jointly. We shall assume that the signal in each repetition 
period does not have velocity resolution 

WrH (x, <!>) = WTu (x,  0) = U'rM (x). (7-33) 

We shall also assume that for coherent systems the sampling is done in a 
channel for which in (7.25) 

«I» — (I>  
•  T 

'   n (7.34) 

or in (7.17) 

4> — 4>0^0. (7-35) 

Then the output of an incoherent system with a small number of 
repetitions, as well as of a coherent system for a frequency channel 
through which the signal passes, will have the same appearance (4.52) in 
the region of high correlation 

Y(x, <» = 2q\\yf(tl-90VVTM(x-x0)\ + Nc(x,  0),        (7-36) 

where the random process N (T,0) is such that 

>«K.W,(*.. 0^ = 2^1^(0,-0,)«^ (v-c,)|.       (7.37) 
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The matrix of second moments of the best estimate 6*, T* is defined by 

formulas (4.57)-(4.60) 

ft2 82, , 
x    *a ___ 

82. 82 
x» "a 

V'2, tf 
0 

2 »2 V«S »I 

(7.38) 

where 

«- 
— V ft) 

t=0. 
. P:= 06» ^ ' «=o 

(7.39) 

Thus, when the angular coordinate and range coordinate are sampled 
jointly, the potential dispersions of the estimates or the dispersions 
of the estimates of the maximum likelihood 6* are 6g the same as when 

one of these parameters is estimated with the second parameter known 
exactly. Accordingly, when the range coordinate is known exactly (and 
when the parameters are estimated jointly (T and 6)) the potential 
sampling accuracy of the angular coordinate for coherent systems and 
for incoherent systems with a large number of repetitions is 

*:=• 
(7.40) 

W'l tf 

When the generalized directivity pattern of the receiving and transmitting 
antennas are approximated in the form of bell-shaped function (7.19), we 

find 

cfl       2 In 2 (7.41) 
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The formulas presented in the present section can also be used to obtain 
more complex formulas which determine the dispersion of the joint estimate 
of the parameters T,0 and $. 

7.2.  Optimal Processing During Azimuth Scanning 

We have not yet touched upon the question of optimum processing of the 
received oscillations during spatial scanning. Our investigation of 
potential capabilities has been based on the assumption that an optimum 
output Y(x,8,$) or Y(T,0) is formed if the system does not have velocity 
resolution. 

We shall now discuss the simplest, and near-optimum, method for forming 
the output. This method is based on the fact that two parameters — range 
and azimuth — are determined by.the delay time of the modulating and cutoff 
functions, respectively. A delay search can be made by means of optimum 
filtering or some equivalent method of carrying out an optimum linear 
operation. 

As a simple example we shall examine a system designed to receive signals 
reflected from stationary targets.  The optimum output of such a system is 
determined by expression (7.10), assuming that $ = 0 

K(x, 8) = L J xmW-ty^^it-v-kTJdt (7.42) 

We shall assume that the receiver consists of a linear system with 
impulse response 

A(0 = TH)S*r-(-'-*r«) (7.43) 

and an envelope detector.  In order to make it easier to write the 
formulas, the time offset in (7.43) is omitted, which makes it possible 
to satisfy the conditions for implementation of the system. The voltage 
at the output of such a receiver will appear as 

Z(/) = L ] x®tl.(t-Q}%3TmQi-t-kTJA (7.44) 
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and, if we introduce the notation 

(7.45) 
t = nTu + %   (0<x<xm; n = 0, 1, 2 .r.), 

/' 

Snd Z(nTm + *) = LIJ x®i[»{nT-l) + 
l-oo 

+*SF]£*r-ff-*-*7,.)d5}-'' (7.46) 

Comparison of (7.46) and (7.42) shows that'Z(nT +T) is the optimum output 

for discrete values of the angular coordinate (equal to wnT -tot.) 

Zit) = Z(nTm + *) = Y(*,unTu + **). (7.47) 

The angular offset COT, when significant, can be considered exactly, 
since it is a known quantity which is determined during independent 
sampling of the range coordinate. 

An analogous result is obtained in systems designed for receiving signals 
reflected from moving targets. 

The optimum filtering method, or other equivalent methods for accomplishing 
an optimum linear operation, thus make it possible to obtain in a single- 
channel system an optimum output which is continuous with respect to the 
parameter x and discrete with respect to the parameter 6 with a digitization 
interval of (A) T . 

M 

In accordance with the general principles for practical realization of the 
potential capabilities of a system in terms of detection it is necessary 
that the extent of the region of high correlation be greater than the 
digitization interval.  In order to realize potential capabilities in 
terms of accuracy in estimating the angular coordinate it is necessary 
to have at least two values of the output in each interval, equal to the 
length of the region of high correlation.  In other words, in order to 
realize the potential capabilities of the system when a single-channel 
arrangement is used to form the output Z(t), the duration of the reflected 
signal must be at least twice the repetition period 
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f>2T (7.48) 

If condition (7.48) is not satisfied, the potential capabilities can be 
realized in a multi-channel arrangement for forming the output Z(t) with 
the appropriate time offset between the channels. 

7.3. Phase Direction Finding Method 

The phase and amplitude direction finding methods are used extensively 
in radar to estimate the angular coordinate of a detected target. These 
methods can also be used to form the error signal and, in principle, for 
azimuth scanning as well. From the viewpoint of antenna engineering, 
phase and amplitude direction finding systems can be designed in many 
different ways. We shall not be dealing with the design singularities 
of antenna systems or other details.  In our explanation of the methods, 
we shall present the most obvious ways of implementing them. 

.We shall begin by examining the potential angular coordinate sampling 
accuracy in the phase direction finding method. The antenna system 
consists of two reflectors, with feeds H. and H_ at the foci (Fig. 7.1) 

and separated by distance D.  The patterns of both antennas are the same, 
and have maximum gain in the direction of the geometric axis 8 . 

Fig. 7.1. Antenna arrangement for 
phase direction finding 

In order to simplify the formulas below, it is assumed that the 
angular position of the geometric axis 9. coincides with the direction 

corresponding to the origin of the angular coordinate 9, i.e., 0. = 0. 

The angular coordinate is sampled within a relatively small sector 16[\< 0 , 

for which the antenna gain can be assumed constant. 

The form of the signal 3(t) or the form of the modulating function S(t) 
is of no importance.  It is assumed here and below that the reflected 
signal has fixed intensity and contains only a single repetition period 
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with duration T.  The influence of the fact that the reflected signal 
contains a greater number of repetition periods and has random intensity 
can be allowed for easily.  This issue was examined in sufficient detail 
in our study of coherent and incoherent reception methods. 

The signals reflected from the target and received by the first and second 
antennas can be written in the form 

M'-vO. T) = RejS(/-x)exp[/2^.(/-.)+/^0-|-/T]|.    (? ^ 

3,(t-%.  6, f)=R|ts(/-t)e»p[/2V,(/-x)-/^6-|-y?.]}. 

In (7.49) sin 0 is replaced with 6 in accordance with the assumption of the 
smallness of angle 0, and the initial phase <j) can contain a term which 
determines the relationship between the received oscillation and the 
target velocity. 

The investigation is done for internal interference in the receiving channel 
Therefore, interference in the channels of the first and second antennas 
are mutually independent of random functions.  Considering that interference 
is added mainly during the amplification and frequency conversion of the 
received signals, we can imagine two processing circuits or methods.  In 
the first method the received signals 3* and 3« are amplified directly, 

converted, etc.  In the second system the sum and difference signals 

= 2cps(5£ -6) Re [S(t -*)cxp[/2«/. (t-z) + j<t)}, 

* 

= 2sin^0JIm{S(/-x)exp[/2ir/,(/-T)-l-/«p]}, 

(7.50) 

* 
This limitation has not been introduced previously. 
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are first formed in the antenna-feed system, after which the signals 
3y1 and 3„2 are amplified, converted, etc. 

In accordance with the definition of the parameter estimation problem, 
we shall assume that the first and second channels receive as input 
the oscillations x.(t) and x (t), consisting of statistically independent 

interference n (t) and n (t) and the signals 3^ and 32 (or 3^ and 3^) 

with unknown useful parameters T and 6. We shall assume that the a priori 
distribution function of the useful parameters is uniform over the 
required working region of variation of these parameters, and is equal 
to zero outside the working region. 

The likelihood coefficient. J\(T,9), which differs by a constant coefficient 
from the function of a posteriori probability of occurrence in the 
received oscillations x and x„ of signals with the parameters (T,6) is, 

for the first method, 

A(x, 0) = exp(-2^)/J^-L J xt(t)3l(t-c.e,<p)<tt+ (7.51) 
-oo 

-f J x.(t)at(t-*, 6, <t)dt 

where 

9. = ± | s)(t, 0, ?)^ = äfc ] WW* (/==1' 2>' 
(7.52) 

In writing  (7.51)  it is assumed that 

2« 
'_«     *     L|=0—oo   ' ■' 

=^_ jexp/cos[x(x)-T]i||j j *,(/)*,(«—«. 0)y/|Jd?. 
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where x(T) i-s the argument of the complex quantity 

We can use as the optimum output Y(T,0) the function 

Y(,, W=~L 
-00 

+ Jjf,(/)J,(/-■•. Ö, f)dt\. 

(7.53) 

which, assuming that we are dealing with an ensemble of cases in which 
a signal with parameters (Tn,0n) is input, transformed into 

where 

<l»ciK. e.)+°c*K. °.))[»c,K. «.)+»«,(•«.. ».)]) = 

= 2»F(xJ-x,)cos^(ei-6a).    • (7-55) 

The joint modulation correlation function for the parameters T and 6, 
like in the other cases of joint sampling of the range coordinate and 
angular coordinate, is the product of the corresponding correlation 
function 

T(x,'8) = V(t)iri(0). 
(7-56) 
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Furthermore, as was shown above, in order to calculate the potential 
sampling accuracy of the angular coordinate 8 when T and 6 are 
measured jointly, it can be assumed that the range coordinate T is 
known exactly. 

Considering that the correlation function of the signal for the angular 
coordinate 

l*(°)i = itD, 
COS-^-t (7.57) 

has a repetition period of X/D, elimination of ambiguity in the sample 
requires that the working sector be selected on the basis of the 
condition 

9A ^r x' <7-58) 

The optimum output Y(x,0) has the form of (4.52). Accordingly, we use 
formula (4.57) or (4.62) to find the potential dispersion of the angular 
coordinate samples 

',-<sa-V>—ps?- <7-59) 

v(x). 

Using the second processing method, in which the sum and difference signals 
are formed in the antenna feed system, the likelihood coefficient A(x,9) is 
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—00 

00 

' XRe{S(/—t)e
/2*,'('-',)}^ + sinxfl f •*.(') X 

Xlm{S(f-T)e/2"M'~V 1 (7.60) 

If we examine an ensemble of cases with fixed parameters (T_, 6-.) of the 

received signal, the expression for the corresponding optimum output 
Y(T,0) becomes 

Y(x, fs) = 8q'\V(x-xt)\  cOs^(0-0fl) 

+ 2?l»CI(t.O)+ »,,(■.. 0)1. 

*D + (7.61) 

The random process G .+0 _ is defined by (7.55).  Output (7.61) is 

the same as (7.54), to within the coefficient 2 of the quantity q2. 

Therefore, the dispersion of the estimates of the angular coordinates 
will be 

<=■ 

8q> 
nD  .» 

ir) a.62) 

Thus, if we can only disregard noise in the antenna feed system, in 
contrast to noise in the other components of the receiving circuit, the 
dispersion of the estimates of the coordinate 0 is half as large in the 
second circuit. 
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7.4.  Amplitude Direction Finding Method 

We shall examine a simple circuit which implements the method. We shall 
assume that the antenna system consists of one reflector and two feeds 
which are offset symmetrically with respect to the focus in the focal 
plane such that the directions of the maxima of the directivity patterns 
Y (6) and y  (0) of the first and second feeds are offset accordingly by 

an angle of -a and +a with respect to the geometric axis of the antenna 
system, as is shown in Fig. 7.2 and expressed by the replationships 

Yi(e) = T(0-fa), Ya(0)==T(0 —«)• 
(7.63) 

It is assumed that the directivity pattern y(6) is an even function with 
its maximum at 8=0. 

Within the working sector, which approximately surrounds the region 16| < ot, 
the signals 31 and 32 received by the first and second radiators have the 

same phase and differ only in amplitude 

3t{t — *>  °. ?) = Y(fj— °)3{t — 1,  <P). 
(7.64) 

Fig. 7.2. Directivity pattern of 
radiators VL   and H„ for 

amplitude direction finding 
method 

W/ 
1 

\      J 

r \ 

. -d.    L )     d 

The likelihood coefficient for the parameters (t,G) using the first 
processing method (without forming the sum and difference signals) is 
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A (t, 0) = exp {-^rty [T* (0.+ a)-f Y« (O-a)jlx 

—00 

-H(O-a) J *,(0 *(/-•». <*>)</*]), (7>65) 

where q    denotes 

«■--^•.J ''«"'• 
(7.66) 

We then compose the likelihood equation, assuming that a signal is 
input with parameters (TQ, 8 ) and that the range coordinate T is 
known in advance ® 

' j£lnA(*.0)| >|r.[-r('j;+a)T(6; + s)- 

- Y (00- «) Y (^-*) +T' &-W Y (0,+a) H-T' $-«) Y (O.-a)] -f 

+ YM-[Y'(fto'+a)«,cl + Y'(8;-a)&c2] = 0.  . 

We expand the functions YCTQ-KX) and Y(TQ-a) in the vicinity of the 

estimate by powers of the small parameter (6*-0 ).  Then the likelihood 
equation becomes - 

$T ß-°.) «T1 (8o + «)J« + [Y- (Oo -«)]•} + 

: . +öT^KlT',(8o + a)]' + lY'(8o-a)]'=0,       (7"67) 

where 0 is a normal normalized random quantity. Assuming that 

[f«+«)r+iT,Ä-«)],«2ir(a)r. (7.68) 

102 



we obtain this expression for the error dispersion: 

«-<Ä-W-TJrft$ (7.69) 

With the second processing method, in which the antenna-feed system forms 
the sum and difference signals, 

' *.,(t-*. 0. ?) = [Y(9+«)+Y(ö-a)]*('-*. ?).        (7.70) 

*n (' - *• °. *) = IT (fl + «) - T (8-*)] J ('—«. ?)• 

The likelihood coefficient is 

A(t. ^^expj-^-l^ö + aJ + Y^ö-^jX 

x/. {^ i [ft (»+.«;+T(*-«)}^. (')*('-'.?)*+        (7>71) 
» 

If we assume that  the received oscillations x1 and x„  contain a  signal 

with parameters T0 and 8»,   the argument of the function I_ in  (7.71)  can 

be transformed as follows: 

^ {[Y (° + *) + T (0 ~ «)] IT (». + «) + T (0. - *)] I* (*-*.)! + 
+ [T(* + «)-T(«-*)llT(^ + «)-T(^^«)llv(*-t.)l+'-. 

+ J^{[Y (0+a)'+ T (O-a)l 0, (t) + jT (Of a) -Y (0-a)] ft, (*)}== 

-$T1,i; (* ~ *.) I If (Ö + «) Y (0. + *) +Y («-«) Y (».-«)! + 

' +^r[Y(0 + «)Ocl(x) + Y(0-a)ftc2(x)J, 
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which again, to within the coefficient /l    of the first term, leads to a 
likelihood equation of the type (7.67).  Accordingly, for processing in 
which the sum and difference signals are formed 

 » ft(«) V 
*~ W [Y'(")J" 

,2   1 ri(a) ? (7.72) 
V 

Like with the phase direction finding method, if the noise in the antenna 
feed system can be disregarded as compared with the noise in the other 
elements of the receiving channel, the use of the second arrangement in 
which the sum and difference signals are formed makes it possible to 
reduce the dispersion of the estimates by a factor of 2. 

In order to illustrate the formulas derived above, we shall calculate the 
potential angular coordinate estimation accuracy for the first processing 
method for an antenna system with a bell-shaped directivity pattern 
(7.19) and with a pattern width (at the half-power level) of A.  Here 

.«_   A« (7.73) 
•  VCIa In 2)«' 

and assuming that the patterns intersect at the half-power level (a = -^), 
we find 2' 

*<-~V(2l„2)>- (7'74) 

It is interesting to compare the accuracy with which the angular coordinates 
are sampled in the phase and amplitude direction finding methods. We shall 
assume in both cases that the field intensity of the reflected signal, as 
well as the intensity of the interference in the receiving channels, are the 
same and, as Fig. 7.3 shows, the total aperture area of the antenna system 
employed in the phase method ($) is equal to the aperture area of the antenna 
employed in the amplitude method (A).  Then the total power of the signals 
received by radiators H., and KL are the same in both systems. Accordingly, 

the power ratios q which figure in the expressions for potential sampling 
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accuracy are the same for both direction finding methods, 
approximate relationship [29] 

Employing the 

t^l,22±-\pad\. (7.75) 

we can write instead of (7.74) 

D«\" v(,'»44£) 
(7.76) 

Fig. 7.3. Comparison of potential 
capabilities of direction 
finding methods. Aperture 
areas of antenna systems 
for phase ($) and amplitude 
(A) direction finding methods, 

l * Dt - 

m *i< i i , Hi 

i i-^— 

w Ht* •Hi 

 A ~* 

On the basis of (7.59) and Fig. 7.3 we have 

Aq' 
D*\* (..*4') 

(7.77) 

In the phase direction finding method. 

The comparison above is approximate; even so, it indicates definitely 
that the potential angular coordinate sampling accuracy for both methods 
is of the same order and that, for a given reflected signal field intensity, 
it depends basically on the size of the aperture of the antenna system. 
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7.5.  Optimal Processing Schemes for Amplitude and Phase Direction 
Finding Methods 

It was pointed out in Chapter 4 that in order to obtain the best estimate 
of a signal parameter there is no need to form an optimum output for 
each value of the measured parameter.  Considering the random nature of 
signal intensity, in order to sample the parameter 0 it is sufficient to 
form two values of the optimum output, after which the best estimate is 
obtained by solving a system of equations.  In defining the optimum scheme 
we shall assume that, in accordance with the proofs in § 4.2, the 
likelihood coefficient 

A(t, 0, e) = exp{-^r J s](t, 0, 9)dt + Cfsl(t,9,f)dt]\x 
—00       , —00 ' 

x/« (£L [ I -v«(/) *» <'-x- °-^ dt+ ] ■*» w *.« - *. o. tut \y 
(7.78) 

in the vicinity of the estimate (x*, 9*, £*) can be represented as 

A (x, 0, s) = exp|-^[ J j;(/, OlT)rf/-f- J^(/,8,«p)rf/])x 
1 —OO —00 

X',lhfcL\ $ *.('-■«.«. i)*i(t-<, öS, <fl)dt+ (7>79) 

CO 

—oo 

When a processing scheme is employed in which sum and difference signals 
are formed, 3y1 and 3y0 must be substituted for 3,, and 30 in (7.78) and 
(7.79).     L1 LZ 1 Z 

The method for constructing the error signal and estimate formation circuit 
was described in § 4.4.  For direction finding systems this method consists 
of the following. On the basis of (7.79) operations are selected which 
convert the function A(t,0,e) for some fixed values of 0 and e to the output 
d(x) which, for a value of T equal to the true delay time T_, represents a 

monotonic function of the deviation of the direction of the geometric axis 
from the best estimate 0*  The error signal d(x ), in particular, can be 

proportional to the deviation of the geometric axis from the best estimate. 
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In order to obtain the estimate 6* it is necessary to define a second 

conversion of the function A(T,0, e) to an additional output ® (T) , 
whose knowledge for T=Tn would make it possible to eliminate the random 

intensity parameter from the error signal. We shall designate the 
conversions of the function A (T,6,E) which we have selected by the 
symbols. T and T^,  and the fixed values of the parameters 0 and e in the 

first and second conversions by 0., Z^  and 02> e2, respectively. Then 

solving the system of equations 

p»[A(*.o. .)U.^lit=t;=rfK), (7>80) 

makes it possible to obtain the estimate 0* in the form of some known 

function <j> of the variables d(xQ) and ä5 (TQ) 

X = ff[d(xt),  £J(t,)l. (7.81) 

The receiver must, consequently, normalize the output d(x) and S) (T). 
The operations over the received oscillations x^t) and x2(t) and the 

corresponding radio circuits'needed to do this .are defined on the basis 
of representation (7.78).  The outputs are then input to a decision device 
whose functions are determined through (7.81). 

It was noted in § 4.4 that there is no single solution to the problem of 
composing the system of equations for obtaining the best estimate. A 
large number of systems of equations, and accordingly of radio circuits,^ 
can be proposed which provide potential sampling accuracy. The designer's 
problem is obviously to select the system of equations (7.80) such that 
the corresponding radio circuit has certain practical advantages, such as 
simplicity of implementation.  The choice of systems of equations (7.80) 
in the present section is made so that the circuits which are obtained are 
as close as possible to those actually used in practice. 
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In the phase direction finding method, employing a processing scheme 
without forming some indifferent signals, we accordingly use the 
following as the output of the channel which forms the error signal 
d(x) and additional output for obtaining the estimate & (x): 

<*w= ^-[lnA(x, 0,.)]« 
'<?» 

£>(T)= ^[lnA(x,e,s)]= 

.=1, 8-0 

•=1. 8=0 

(7.82) 

We shall demonstrate that the relationships stipulated above between 
the quantities d(TQ) and^b (TQ) and the estimate are obtained in this 

case.  If we consider that the square of the envelope of the sum of 
two oscillating processes can be represented as 

{L [/, (t) cos («V -f 9t) -f /, (/) cos (%t + 9,)]}» = 

= /! (0 + fl (') + 2/, (t) h (0 cos (?t - <pa), 

after substituting (7.79) in (7.82), we find 

^W=8(^)a^(¥-)Scos^ö; 
(7.83) 

and the expression for obtaining the estimate 

o—2«D arctS  X »(t,)4 (7.84) 
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We now define the circuit for forming the outputs (7.82), for which we 
substitute in these expressions the likelihood coefficient (7.78) 

*(*>«£* 
•D 

A j*,(/)Re{S(f-*)e ;    
x }<«+ 

-oo 

, 2 7 ■ ' /2«f.('-')-/x-«,  Tl2 . +£ f*,(0Re{S(f-t)e-     x }«   = 

{2yl(t)yi(x)co*[«I(x)-«i(t)+^ft]}^. 

(7.85) 

t>8 

where Y] (T) , Y„(T) and XAT)  and X2(T) are the envelopes and phases of 

the high frequency processes 

• 00 00 

jL  f*,(0J (*-*)««   and   jL jx,(t)s(t-*)dt, (7.86) 

Thus, 

d (x) = 2 ^ K, (x) /, (t) sin [xt (x) - x, (t)]. (7.87) 

Analogously, 

£J (x) = 2 ^y Yt (x) ya (x) cos fc (x) - x, (x)] (7.88) 

and on the basis of   (7.84) 

o;=^(vK)-M*.)l- (7.89) 
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The optimum processing scheme consists of optimal filtering of the 
received oscillations x (t) and x2(t) in linear systems with identical 
impulse responses 

hl(() = ht(() = ca(-t, <p) (7.90) 

and measuring the phase difference between the oscillations at the 
output of the optimal filters.  Figure 7.4 shows a processing circuit 
which is a direct interpretation of these expressions. The notation in 
the diagram is as follows: FD — phase detector, FI — phase inverting 
network, which multiplies the phase by TT/2, DD — decision device, which 
forms the estimate 6* on the basis of (7.84). 

Fig. 7.4.  Optimum processing circuit for phase direction finding 
method 

As a check, we shall calculate the dispersion of the estimate (7.89) 
obtained in the optimum processing circuit. We shall assume that the 
input is a signal with the parameters (x_, 3Q, e0, <f>0). Then the 

oscillation at the input of the optimal filter will be 
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£ ] *,(0*('-*)dt = V'.I *(■• -*.)IX 
—00 

X cos |2«/, (t - *,) + «P. + T"6«] + 

-j- JVel (x) cos [2./, (x - x0) + <p. + x Bi]+ 

+ WSI(x)sin[21t/0(x-x0) + ?0H-xV]: 

(7.91) 

Since the signal is significantly stronger than the interference in the 
vicinity of TQ,  we can write 

* (,) = « 4-ü£()4.^ (7.92) 

Analogously, 

^|.-+*''.<t,). (7.93) .K)«T..-TV+^ 

whence according to (7.89) 

0'— ft i *W + tfn(«> X (7.94) 
0   ° "V   2</'«,    2*£> 

and 

*;=((<>;-o.)')=  JnDy. (7-95) 
4A>(X; 

As might be expected, the dispersion of the estimates obtained in the 
optimum processing circuit is the same as the potential dispersion of 
the estimates (7.59), if we only allow for the random nature of the 
intensity of the received signals in (7.59). The coincidence of these 
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dispersions need not be checked below. 

In the amplitude direction finding method, employing a processing circuit 
which does not form sum and difference signals, the output of the channel 
which forms the error signal d(t) and the additional output S6 (T) can be 

"w=rV. ^5- In A (x, 0, s) de 
.-I. 8=0 

and 

I W I lt=l.i= 

(7.96) 

(7.97) 

According to the expression for the likelihood coefficient in the 
vicinity of the estimate (7.79) 

V-J d K) = Y^- (Y K + «) - T ß - «)]. 

2«?1«; 
^K)=-^[Y(Oo+«)+y(o;-«)]. 

(7.98) 

(7.99) 

The estimate 6* can be found by solving (7.98) and (7.99) simultaneously. 

In order to define the optimum processing circuit, we substitute (7.78) 
in (7.96) and (7.98).  Since the signals in both channels are in phase 

L —on 

+ 7(0-«) ]xt(t)s(t-x) dt ^(O+^W+TfO-aJMx), 
(7.100) 
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where Y (T) and Y2(T), as above, are the envelopes of processes (7.86), 

Therefore, 

</(T)=M'«)-y,w. 
(7.101) 

(7.102) 

Figure 7.5 shows the corresponding processing circuit. We note that this 
circuit does not respond to variations in the initial phase of the 
oscillations. The initial phases of the oscillations of the received 
signals s, and s„ can be different, or even statistically independent. 

For this reason, it is possible for this circuit to employ a single 
processing channel, with the first and second radiators connected 
to it alternately for a single repetition period. 

Hf 

Hti 

LSA, 

LS hi D 

ML 

ML 
DD 

Fig. 7.5. Optimum processing circuit for amplitude direction finding 
method 

In the case of processing in which sum and difference signals are formed, 
the question of the structure of the optimal receiving circuit will be 
considered in more general form, for phase and amplitude direction finding 
simultaneously. We note that for both direction finding methods 

\{t-*x 0, ?) = *,(/-■«, -0, <p)sj(/-t, 0, <p), 

lim 4 su (/-*, 0. f) = 14 a (t-t, 0. f) I e «I (/-«. 0, 9). 
•-*n *° I 11=0 

(7.103) 

(7.104) 
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By analogy with the preceding case, the output of the error signal formation 
channel can be the function 

d(*) = c\±lnA(x,  0, e) 
•=i,e=o 

[=c <30 ]*,(/) *„(/-*. 0, <?)dt + 

+ J*.(/)*„(/-*, «. f) <# 
J=<) 

(7.105) 

Further  transformation of  (7.105)   considering  (7.104)  allows us  to 
obtain 

dim 
8-»0 20 

+   [xt(t)3ti(t-X,   0,  *)<// H J •*,('&,(<-«.-0, *)<//+ 

60 ' 

■ clL 

— L 

{00 

L   Umi ^Xl(t)s(t-x, 0, ¥)rf/ + 
—so 

00 

+ $xt(t)s't(t-%, 0, ?)<// 
—00 

00 

lim- [xt(t)3(t — x, 0,.<f)dt- 
-   —oo 

00 

(7.106) 
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If 

^xt(t)s(t-x, 0, <f)dt  >L Jjc,(0^C-*. 0. f)rf/ (7.107) 

(which, of course, occurs with both direction finding methods near T=TQ), 

the occurrence of a large coefficient ahead of the first terms in the 
square brackets has practically no influence on the result, since these 
terms compensate one another after the operation L has been executed. We 
can therefore write 

d(*) = L\ct]xt(t)3(t-x, 0, <?)dt + 

—«a 
va 

ct^a(t)jt't{t-x, 0, i)dt 

(7.108) 

where c. and c„ are arbitrary constants, but are such that adding them as 

factors to the right and left parts of (7.107), respectively, does not 
violate the inequality. 

We assume the additional output 3& (T) to be 

= cL 

which can be written as 

B (x) =<yin A (t, 6, «) + jL j( jj -f sntj dtj^ 

±.^xt(t)s(t-x, O.tfdt 

»=0 (7.109) 
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L  —00 
oo - 

+ 
+ L 

CO (7.110) 

I 
-*• I-MO^C-;*. o, f)dt\. 

Figure 7.6 shows an optimum processing circuit which forms (7.108) and 
(7.110).  The component E and E„ shown in the figure form the sum (+) and 

difference (-) of the input oscillations.  The impulse responses h..(t) and 

h„(t) of the linear systems must be, to within a constant coefficient: 

— for the amplitude method 

ä»W=?ä,(0 = J (/,-/, 0,.¥) (7.111) 

— for the phase method 

A, (/) = Re {S (/, -1) exp [/ (2*/,/ + <f)]}, 

A, (t) = Im {5 (tt -1) exp [/ (2«/,t + ?)]}. 
(7.112) 

The functions Y (x) and Y (x) input to the decision device (DD) in 

Fig. 7.6 are connected with the outputs d(x) and£>(x) as 

d(t)"=M*)-M*). 

3(*) = M-0-K.(«)- 
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Fig. 7.6. Optimum processing circuit for phase and amplitude direction 
finding forming sum and difference signals 

The equations for obtaining the estimates are analogous to the 
corresponding equations in circuits which do not form the sum and 
difference signals.  If we again use representation (7.79) for the 
likelihood coefficient in the vicinity of the estimate, the equations 
can be transformed as follows: 

for the phase direction finding method 

nD, (7.113) 

(7.114) 

for the amplitude direction finding method 

^K) = c[Y(0o'4-a)_T(0o-_a)], 

0K) = '[r(ö;+a) + Y(üo*-a)|. 

(7.115) 

(7.116) 

The circuits obtained in this section, with the possible exception of that 
in Fig. 7.6, are not new. But even so, it is interesting, first, that these 
circuits were obtained by applying the analytical apparatus for defining 
optimal circuits and, second, that it has been proved that the circuits in 
Figs. 7.4, 7.5 and 7.6 exhaust the potential capabilities of amplitude and 
phase direction finding systems. 
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7.6.  Multichannel Systems 

Amplitude and phase systems are designed primarily for forming an error 
signal and sampling the angular coordinate. However, they can also be 
used for detection as well. One advantage is their capability of 
operating with stationary antenna systems.  Even so, they have serious 
deficiencies: the received signals, which differ only in angular 
coordinate, are strongly correlated. In other words, amplitude and 
phase systems have no azimuth resolution. Another deficiency is the 
extremely small size of the working sector, which is determined for 
the amplitude method by the width of the directivity pattern, and for 
the phase method by the sector of indeterminacy, the angular extent of 
which is X/D rad. These deficiencies can be reduced in principle to some 
extent by employing multi-element and multichannel systems [73, 74], 

Fig. 7.7. Directivity patterns of radiators HL-ML,..., H_  for 

multichannel amplitude direction finding method 

With the amplitude method, a multichannel system consists of some number, 
such as 2n, of radiators, the relative positioning of whose directivity 
patterns  y (6), (6) ,Y?

n(8) is shown in Fig. 7.7.  The signals 

received by the radiators are input to 2n independent processing channels. 
Each received signal is passed to the output of two channels. The angular 
coordinate is determined by the numbers of these channels and the ratio of 
the amplitudes of the signals in them. 

In studying the phase method we shall again examine the simple example 
in which the antenna system is a linear array (Fig. 7.8) consisting of 
2n reflectors with radiators ML, H_, ...,H  arranged at their foci.  The 

signal with parameters (T,8,<|>) received by radiators H2-_i anc* M( can 

be written as 
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= Re[5r/-t)exp|"/2r/#(/-,)-f-/^(2/-J)-{-/>jj, 

= Re{S(/-x)exp[/W,(/-,)_/^(2i~|) + /?JJ. 

« ln-\ »3       »i 

I . . 

t" ♦ 
h-ZH 

7M 

I 
1 

Fig. 7.8. Antenna arrangement for multichannel phase direction finding 
method 

If the received signals 3,., 3»,..., 3„ are processed directly in 2n 

independent receiving channels, the likelihood coefficient 

A(X, 0): 

«expl-V«}/, 
it» 

^jx,(t)s,(t-x, 0, f)dt (7.118) 

assuming that a signal with parameters (T_, 6Q)_ is input, is 

A (*, 0) = exp (- 2?«n) /0 [2*2?» | «Jf (, - ,,) 11V (0 - 0.) | '+ 

.  +W(x, 6)], (7.119) 

where [30,74] 

Hn'ln^i 

(7.120) 
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and the random process N(T,0) is such that 

(N(*lt OJJVft,, IJ)s2«VV(i1-tl)VT(lI-»J. (7.121) 

The angular coordinate correlation function (7.120) is periodic, with a 
repetition period of A/D. Figure 7.9 shows the function |Y | in one 

repetition period for n=l and n=4. The width of the base of the main 
lobe is A/nD. The side lobes of the function are relatively small, and 
drop off as n becomes smaller. 

The unambiguous detection angle in multichannel phase systems, which 
determines the working sector, thus does not depend upon the number of 
antennas, but rather the distance between adjacent antennas. On the 
other hand, the resolution depends upon the number of antennas and is 
determined by the overall extent of the antenna system 2nD. The number 
of resolvable angular coordinate positions can be assumed to be 2n. 

.. W 
yT 

s 1 \^ /    1 \ \ /       1 \ \ 
• ■ ■'/    kfi 

/       k* 
i         \ \ 

hnf\ ■ Y\r\ N 

*    3    l±    ^L   i 1'iJLa 
3   ~8  "S ~B'        8    8    8    8, A 

Fig. 7.9. Angular coordinate correlation function of signal for phase 
direction finding method (2n — number of antennas). 

We note that when the phase direction finding method is employed the 
analytical formulas for the angular coordinate performance indicators 
are similar to the formulas for the performance indicators for the range 
coordinates in Doppler systems. For example, the correlation functions 
Y(T) of a Doppler system with 2n frequency components spaced 2F apart is 
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the same as the correlation function Y (6) of a phase direction finding 

system with 2n antenna systems spaced distance D apart (Fig. 7.8). The 
angle D/A rad is the analog of the frequency interval of 2F. 

The potential sampling accuracy of the angular coordinate is determined by 
formula (4.62), and is equal to 

»;=«.;-*)•>=^. (7.122) 

where [30] 

pJ = |.rT-(0)|=(^)'i V] {2* - ir^^^pi^V.      (7.123) 

As the number of antennas, and accordingly the number of independent 
receiving channels, is increased the accuracy with which the angular 
coordinate is estimated increases monotonically.  However, when the 
signal energy is fixed, like in the case of expanding the signal 
spectrum, the accuracy does not increase without limit, but only until 
the power ratio exceeds the threshold. 

If the noise in the antenna feed system is significantly smaller than 
the total noise in the receiving channel, processing without forming 
sum and difference signals does not fully utilize the system capabilities. 
The loss increases as the number of channels 2n.  Let us suppose that the 
signals 3_. 1 and 3-., received by the antennas" in Fig. 7.8, are not 

input directly to 2n processing channels, but rather form 2n sum-and- 
difference outputs 3-..,.... 3„„ .  In order to find the optimum nature 

of summation of the signals 3,., 3„,..., 3~ , we shall examine the result 

of simple summation of the outputs of all of the antennas assuming that 
the signal has the parameters (t-, 8-, (f>-) 
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2/1 

jjj,(/-t#10.. ?.) = 

/I 

= 2 £ Re {«(/-%)exp[/2«/§(/.-T,)+/?,}} cosjf (2/-1 )*,|= 
, /«=i 

itO. 

o "',     n  ^ Sltt2nT9* (7.124) 

•*# 2mln-r 

The summary.output (7.124), which is applied to the input of one of the 
2n processing channels, has the maximum possible intensity when 6 =0. 

It can be assumed that for any 0. belonging to the working sector |8_| _< X/2D 

the signal intensity will be close to the maximum possible value at the 
input of one of the 2n channels if the angular offset between the directions 
of maximum intensity in the adjacent channels is X/2nD.  In order to achieve 
this, the input to an arbitrary kth channel must be the signal 

■2ns(t-^ o, *)    , r
L
nD; rir' (7'125) 

where       'k = — n,  —n-\-l n — 2,n—\. 

Considering (7.120) and (7.124), the expression for the sum-and-difference 
signal at the input to the kth channel can be changed as follows: 
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= 5jc(>s [« £ (2i - ')] KC—«o.».. ?o)+J«-i ('-V«o.?o)]-H     (7.126) 

. + s«n[*K-(2«"-l)][JaV-V *.. ¥.)--»«_i('-vk ?.)]> 

which indicates the manner in which the optimum sun-and-difference outputs 
are formed at the input of the 2n processing channels.  If we disregard the 
occurrence of side lobes in function (7.120), the system becomes identical 
to the multichannel amplitude system whose directivity patterns are shown 
in Fig. 7.7. The width of the base of a directivity characteristic of each 
channel is A/nD, and the angular offset between the characteristics of 
adjacent channels X/2nD. The diagrams intersect at the 0.405 power level. 

Finally, if a single processing channel is employed [73, 74], to which 
signals are applied alternately from different radiators with the amplitude 
method, or different sum-and-difference signals for the phase method, the 
system becomes equivalent to one which employs flat rocking of the directivity 
pattern.  This again indicates that the potential capability of systems 
in scanning angular coordinates and direction finding are determined basically 
by the geometric dimensions of the antenna system, as well as the number of 
independent processing channels. 

In order to simplify the task in this chapter we have excluded certain 
capabilities of antenna engineering.  For example, we have assumed that 
the (voltage) directivity pattern y(B)  of the antenna system is a real 
function of 8.  Furthermore, the correlation function ¥ (6), which 

determines the potential capabilities of the system with respect to the 
angular coordinate 8, differs little from the function y(8).  It obtains 
accordingly that the potential capabilities of the system are almost 
fully determined by the directivity pattern y(6)   itself — its width A. 
However, in the general case the function y(8) may be complex, and the 
correlation function ¥(6) may differ significantly in width from y(Q). 
The relationship here is precisely the same as between the signal S(t) and 
its correlation function ^(x) [56], 

Further, during our examination of phase (and other) systems we disregarded 
the time offset between the complex envelopes of the signal S(t-x) 
received by different antenna elements.  In accordance with the operating 
conditions which usually occur, the latter assumes that the signal correlation 
time T is significantly greater than the time intervals 

K 

(~  sxn ) corresponding to the difference in travel of the beam to 
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different antenna elements. However, we can imagine systems in which 
this condition is not met.  Then the joint correlation function ¥(T;0) 
for the range coordinate T and angular coordinate 0 cannot be represented 
as the product Y(T) ¥ (0), and the performance indicators of the system 

in terms of the coordinates T and 0 become interrelated [56], 

Finally, it would be helpful to examine some questions involved in the 
practical use of the phenomenon of superdirectivity [69]. 

Chapter 9. Supplements 

9.1. Signal Reception Against Background of Interference with 
Unknown Intensity 

Up to now we have been studying reception against the background of 
interference with fixed, a priori known intensity. Reception conditions 
such as these occur when the interference is caused by internal radio 
equipment noise.  We shall now assume that the interference can be 
approximated by Gaussian white noise (§ 1.2) whose spectral intensity 
N is unknown and is a random, but constant over each observation 

interval, quantity 

w.=iW. 
(9.1) 

The interference intensity parameter n, according to definition (9.1), 
is the ratio of N_ — the spectral intensity of the realization of the 

interference in a given observation interval — to the mathematical 
expectation of that quantity <N>.  We shall also assume that the received 

signal £3(t-T, 4>, $) is defined by formula (5.10). Then the likelihood 
coefficient for the ensemble of all possible values of the parameters T 
and $ can be expressed as 

A(',«I') = ° *-*, s ,     (9.2) 
(V(l). / Z'm\ 
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where p(e) and p(r|) are the distributions of the intensity parameters of 
the signal and interference, 

f+T 

(9.3) 

i+r 

T{TN7rlXi{l)dt' (9.4) Z' = 

Integration with respect to t in (9.3) and (9.4) must be done over the 
arbitrary interval which includes the reflected signal 3(t-T,<)>,$). 
Assuming that the duration of the reflected signal is T, the integration 
interval will be assumed to be (T, T + T).  2m is the number of measure- 
ments of the interference space, which is determined by the interference 
spectrum width f (2m=2f T) and, according to the approximation 

employed for the noise background, is an unbounded large (practically 
very high) number.  The energy signal/noise ratio q^ is the ratio of 
the mathematical expectation of the signal energy to the mathematical 
expectation of the spectral intensity of the interference 

r 
fj«(/,f,*)Ä . (9.5) 

q,==z       W7)       ' 

2 
The number Z , as will be shown later, is defined by (9.4) such that as 
m -> °° it has a finite limit. 

We now re-write expression (9.2), transforming it somewhat: 

A(x, *)' = 

WIT^H)]"* 
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Asymptotic estimates of the integrals in the numerator and denominator 
of (9.6) can be obtained for large values of m by the saddle-point 
method [20].  The idea of this method in our case is based on the fact 
that the function 

_^) = -fexp(-f), (9.7) 

which enters into both expressions beneath the integral, has a single 
clearly defined maximum at the point n=Z^. The larger the value of 
the parameter m, the more clearly expressed is the maximum of the function 
[f(n)]m. Therefore, for large m the main contribution to the value of 
the integrals comes from the vicinity of the point of the maximum 
(Z^-h, ZH-h). The use of this method makes it possible to represent 
expression (9.6) as the ratio of the functions beneath the integral 
at the maximum point (ri=Z^) 

A(,,-*)^(.)exp(--^j/.[^5^]rf..       (9.8) 

As m increases without limit the sign ~ of the asymptotic estimate 
becomes an equals sign. 

By examining formula (9.8) we can make the following practical 
conclusions.  The definition of an optimum system does not require 
knowledge of the a priori distribution of the interference intensity 
p(n).  The likelihood coefficient A(T,$), regardless of the distribution 
of the signal intensity p(e) for every given value of the number Z^, 
is a monotonically increasing function of the output Y(T,$).  Therefore, 
the optimum decision making rule, which in the general case of the use 
of the Neumann-Pearson criterion is expressed by formulas (2.43) and 
(2.44), can be formulated as follows in our case.  It is decided that 
the target is absent if for all possible T and $ 

r(*. *)<M**).    •      , (9>9) 
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It is decided that a signal is present with parameters (T , $ ) if 

-•K(V *,)>K,(Z»), 
>••      ' (9.10) 

rt*„ *,)==sup[y(t, *)j. 
i. • 

2 
The appearance of the function Y_(Z ), which expresses the optimum 

2 
relationship between the threshold level Y_ and Z , is found from the 
equation 

j.«]pWexp(-5f)/.'(^-)A. (9-lD 

in which A. is assigned by the selected false alarm probability. On 

the basis of (9.11) we can write the optimum form of function Yn(Z ) for 

the distributions p(e) ordinarily used. For a fixed signal intensity, 
when p(e)=5(e-l), 

A, = exp (--£)/,(£,) 

2    2 
and, considering that q » Z , 

Y^'tf+cr. ...   *. (9-12) 

In the case of Rayleigh distribution of the signal intensities 

;'J - z»v- r   vs.  1 
Ao — z« + ,1 ex.P [ 4Z» (z» 4. ,i) J 

2    2 and considering that q » Z , 
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Y^cZ. (9.13) 

The constant coefficients c figuring in (9.12) and (9.13) are determined 
by the given value of A„ or the given false alarm level F.  The 

formula which connects the coefficient c in (9.13) with the probability F 
will be presented below. 

One feature of decision making rule (9.9), (9.10) for systems with 
unknown interference intensity is the fact that the threshold level 
Y , like the output Y(T,4>), is a function of the input data x(t).  Figure 

9.1 shows an optimum processing circuit which follows directly from this 
decision rule. The circuit consists of two channels, the first of which 
is used to form the output Y(T.$). The structure of this channel was 
examined in sufficient detail in the preceding chapters. The second 
channel, which forms the output Z2, incorporates linear system LS2, which 

is a wideband (by comparison with the signal spectrum) amplifier, a 
square-law detector and a low-pass filter (LPF) with cutoff frequency 
of approximately 1/T.  The filter provides integration over the interval 
(T, T+T).  The outputs Y(x,$) and Z2 are input to the decision device, 
which forms the optimum threshold level YQ(Z

2) and makes the decision. 

There are some possible simplifications to the structure of the channel 
which forms the threshold level Y.(Z2).  In order to clarify these 

u 2 
capabilities let us examine the analytical expression for the output Z . 

The number Z2 represents the result of extended integration of the process 

x (t), and is consequently approximately a normal random quantxty. 

LS', D 
' Y(T;0J 

DD x(t) '..." --" ' " 

i\ 
LS'2 D LPF 

Fig. 9.1.  Optimum processing circuit for signals received against 
background of interference with unknown intensity 
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2 
The mathematical expectation and dispersion of the quantity Z can be 
calculated by the formulas presented in § 1.2.  In the case of the absence 
of a signal, when x(t) = n(t), we obtain 

<('+9^)' (9.14) 

where 6 is a normalized normal random quantity, and nQ is the realization 

of the noise intensity parameter T)  in the observation interval in question. 
In case the signal is present, when x(t)=n(t)+eQ3(t-T,(!),$), 

(l+AjL + t-L.) (9.15) 

Assuming that the number 

' m = fmT  . (9.16) 

is extremely large when the noise spectrum f is extremely wide, 
regardless of whether the reflected signal is present at the input, 
we can assume 

Z'^Tlr (9.17) 

2 We now note that the output Z of each channel in Fig, 9.1 retains its 
structure (9.14)-(9.17) regardless of the bandwidth Af of the amplifier 
in each channel, if only TAf is large enough, e.g., of the order of 103 

or more.  In addition, the square-law detector can be replaced by a 
linear one, since 

•»+r      J_ *+r 
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Keeping these remarks in mind, the optimum processing circuit can be 
modified as shown in Fig. 9.2.  Either a square-law or linear detector 
can be employed.  This circuit assumes that a linear detector is used, 
and that the intensity of the reflected signals is described by a 
Rayleigh distribution.  Furthermore, the appropriate choice of amplifier 
gain K ensures, in accordance with (9.13), that an optimum threshold 
level is formed. 

*i% LS'j D  - 
Y(T *L 

DD 
■ 

*\ 
*    ( 

LPF £ K 
■ 

Fig. 9.2.  Simplified optimum circuit for processing signals received 
against background of interference with unknown intensity 

We shall now calculate the threshold ratio q nop We shall assume for 

simplicity that the useful signal parameters (T,$) can take on only a 
single value (T_, $n), i.e., we shall consider a two-alternative system. 

The false alarm probability F and detection probability D, keeping (9.17) 
in mind, are expressed as 

6 I'««*') 

(9.19) 

(9.20) 

in which p (Y/ri) and p  (Y/n) are the distribution functions of the 

output Y=Y(xn, <E> ) for the cases of the absence (N) and presence (SN) 

of the reflected signal, assuming that the spectral intensity of the 
interference is fixed and equal to t](Nn^. We use the symbol O    to denote 

the dispersion of the interference at the output of linear system LS 

130 



(Fig. 9.1 and 9.2), assuming that n=l. Then 

PN(Yh) = -^™p(—^f) (9.21) 

and the false alarm probability for a given fixed value of the intensity 
parameter ri is 

'(!)= f MWK-exp [--l^-l-        (9'22) 
rim      , J 

The analysis below is limited to the most interesting case in which the 
signal intensity parameter e is described by a Rayleigh distribution, 
and the optimum form of the function Y.(Z2) is determined by formula 
(9.13). In this case 

, f = f(ll) = exP(-^), (9.23) 

whence it follows that the choice of the optimal form (9.13) of the 
function Y (Z2) ensures that the false alarm probability remains constant 

over observation intervals with different values of the realization of 
the quantity n.  In addition, formula (9.23) makes it possible to 
use the required probability F to select the quantity c/a, which defines 
the ratio of the gains in the channels which form Y(x,$) and YQ. 

When the distribution of the signal intensity parameter is described by 
a Rayleigh approximation 

/Vv(W-PTiTrt^|~ fr'hW) 1 
(9.24) 

and the correct detection probability 

(9.25) 
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or 

fl»j,(l)«p[^i„,]'rf,„,+!£+fii^!i£J'. 
° *=2 

(9.26) 

We can conclude from examining this expression that when the detection 
probabilities are high, on the order of 0.9 or more, regardless of the 
distribution of p(n), and especially for a fixed interference intensity, 

D^l Lin-1  ' (9.27) 
ql       F 

and the threshold ratio is 

(9.28) 

For comparatively small values (of the order of 0.5 or less) the 
correct detection probability D, conversely, depends upon the distribution 
of the interference intensity p(i"|)« 

We have investigated the characteristics of reception against the 
background of random interference with unknown intensity for signals of 
the type (5.10).* Obviously, the method used to calculate the likelihood 
coefficient can be extended to the case of receiving signals with other 
sets of useful and parasitic parameters.  Like in the present case, the 
analytical expression for the likelihood coefficient for systems with 
unknown interference intensity is the same as the analytical expression 
for the likelihood coefficient in systems with fixed interference 
intensity, if we only replace N in the latter with Z2<N3 . Accordingly, 

by substituting Z <CN„) for KL we can extend all of the results and formulas 

of the theory of detection against the background of random interference with 
known intensity to the case of signal reception against the background of 
interference with unknown intensity. 

*[Chapter 5 not included in this translation. Tr.] 
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9.2. Use of Target Information Obtained During Previous Observation 
Intervals 

All of our investigations have assumed that the duration of the reflected 
signals is small enough that the received oscillations contain information 
only about the instantaneous values of the current signal parameters. These 
signals, of comparatively short duration, were examined in isolation, i.e., 
disregarding the information contained in the signals reflected from the 
target during preceding time intervals. This statement of the problem 
corresponds to the actual operating conditions of modern radars. In this 
regard, Zibert [15] wrote, "We must go beyond the circle of ideal associated 
with finite (and consequently short) observation time   Every radar 
target, generally speaking, has its own temporal and trajectory history, 
which is a more thorough expression of the distinguishing features of the 
target than the instantaneous values of its current coordinates and 
velocity. We must learn to use this target characteristic. More difficult 
theoretical, computational and practical problems arise in connection with 
this issue, but it is this area more than any other which holds hopes for 
future achievements in the development of radar engineering". 

The practical solution of the problem of more or less total utilization 
of the target trajectory in order to increase radar operating range, 
accuracy and resolution is an extremely difficult matter.  In the present 
section we shall suggest that a decision at an arbitrary moment in time T 
is made with allowance for the target information contained in the 
reflected signal for all of the preceding observation intervals, and we 
shall discuss in general features the extent to which this may influence 
the potential capabilities of the system in terms of range and detection 
accuracy.  The extremely important and interesting question of the 
influence of this processing of the received signals on the resolution 
capability is not dealt with. 

For definition, we shall be examining a periodic scanning detection and 
tracking system.  After each scan cycle (or during each scan cycle) a 
statistical trial is made, as is a decision as to whether or not a target 
is present and concerning the instantaneous value of its current 
coordinates. 

In the general case, target coordinates can be taken to mean an arbitrary 
set of useful parameters to be estimated.  Information about the current 
coordinators of a detected target is produced after every scan cycle, so 
that the time variation of the set of useful parameters — the target 
trajectory — is determined practically unambiguously.  The signal duration 
in each scan cycle is equal to the target irradiation time.  The only 
difference of this system is the fact that a decision is made during 
each scan cycle on the basis of signals reflected from the target within 
the present cycle as well as all preceding cycles. 
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The signal reflected from a target, considering all of the scan cycles 
preceding the one in question, called the kth scan cycle, can in general 
be written as 

3(t, {s,}, {Ul}) = YSi(lt S{t U))t (92g) 

1=1 

where si and u are the instantaneous values of the current useful and 

parasitic parameters, respectively, during the ith scan cycle. When a 
decision is made that an approaching target is present, the number k-1 
of previous scan cycles taken into account, as will be shown below, is 
not important, since the energy (an accordingly the information) contained, 
in the reflected signal for distant scan cycles is negligibly small. The 
multidimensional parasitic parameters u. in different scan cycles will be 

considered independent random quantities which belong respectively to the 
regions ü\.  The functions 3. with different values of the subscript i 

each have a different time offset by the corresponding number of scan 
periods.  In addition, the average signal intensity varies in accordance 
with variation in the distance to the target during different scan 
periods. 

Since we agreed not to deal with questions of resolution, the only 
useful effect provided by considering previous scan cycles is the 
increased signal energy realized by the receiving device when making 
a decision. We shall provide a quantitative estimate of this increase 
in the realized energy. We shall be using the following notation: 
R— range, corresponding to the moment at which the decision is made, 
Q2 — energy of reflected signal for one scan cycle with target range of 
R, AR — radial component of length of path covered by target during one 
scan cycle, a — relative path length 

„_&R . (9.30) 
T;. 

For near-maximum ranges, the quantity a is small — of the order of 0.01. 
Q.£ is the total energy of the reflected signal, considering all preceding 

scan cycles.  The increase in realized energy can be estimated by the value 
of the ratio Q|/Q2.  Then, assuming that the energy of the received signal 
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is inversely proportional to distance raised to the fourth power, we 

find 

Qz       V\        '      I f  dz I 
Q*  2j(I+Aa)4~«. j (l+z)V— "3^' (9.31) 

ft-0 0 

The energy contained in sufficiently distant scan cycles, removed from 
the cycle in question, e.g., by more than 1/a cycles, is negligibly small. 

In fact, 

I i* dz 0,875. SI     I (• dz      _u,t»o. 
TT+5FÄT-J-(rRr--Tr-' (9-32) 

which differs little from (9.31) 

The energy gain obtained by considering previous scan cycles thus 
increases as the distance to the target. For distances close to 
the maximum operating range, the total energy of the received signal 
over all of the scan cycles, or over the closest 1/a cycles, is several 
tens of times greater than the signal energy during the last scan 
cycle.  It can be expected that a sharp increase in energy will lead 
to a significant increase in range (or correct detection probability) 

and parameter estimation accuracy. 

The second effect which must be dealt with when attempting to employ 
previous scan cycles in the decision making process is that the signal 
taken over several scan cycles contains more information, or a greater 
number of random parameters, than the signal over one cycle.  Destruction 
or extraction of additional information requires the consumption of 
additional signal energy and, what is most important, it complicates 
significantly the optimum processing circuit. This aspect of the problem 

is dealt with in more detail below. 

The a posteriori probability for a signal 3 with the set of useful 
parameters {s±} = sr s2  sk> on the basis of general principles, 

is 

p(sI,...,sJk/x)==ftsp(sI,.'..,s4)A(sIf...,84), 
(9'33) 
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where the likelihood coefficient 

A(s„. ...sj= f.. .f /?(«,).. .p(uk)X 

XeXp{""^l[lIJ'(/'S'* uAdi+. 
A     oo .       * 

/-I-co J 

(9.34) 

The coefficient k denotes a number which depends only upon the received 

oscillation x(t), and which can have a different value in different 
formulas. The likelihood coefficient taken for one arbitrary ith scan 
cycle will be designated A.(s.) 

oo . 

-\-^X(l)3t{t,  V U)dt\dtr 

—o» / 

(9.35) 

Then, considering that the functions 3. and 3. <j?^i) do not overlap in 

time, and also that the a priori probability p(s.,..., s,) can be 
written in the form x 

P& s*) = /'(s, vMVs,,.. ..s^,),        (9 36) 

we find 

* 

n ,-. .A(s1i...,sA)=riA/(s/)=A(s1,...,sJk_1)AJk(sfc) (9.37) 

and 
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p{slt.. .,sA/x)==*xp(s„ .. .,skJx)p(sJsl1...,sk_l)Ak(sk). (9.38) 

The a posteriori probability p(s1',..., sfc/x) is formed, consequently, by 

multiplying three functions: pCs^..., s^j^/x) — the a posteriori 

probability obtained at the end of the preceding k-lth scan cycle; 
v(s  /s        . s  ) — the a priori conditional probability of transition 
v    k 1'"" ' k-1 
of the object to the point sk after it has covered the trajectory 

s   s  t  and. A. (s ) — the likelihood coefficient corresponding to 

ordinary optimal processing of the received oscillation x(t) during the 
kth scan cycle taken in isolation. Processing of the received oscillation 
during the kth scan cycle, as follows from (9.38), can add nothing to the 
information about the target coordinates s^, sk_2, etc., obtained during 

preceding scan cycles. The purpose of forming the function ptep..., sfc/x) 

is to ensure that the most reliable possible decision is made about the 
presence of the target and about its instantaneous coordinates sk during 

the kth scan cycle. When the decision is made at the end of the kth cycle 
all of the other coordinates s^, sk_2>..., s±  are not subject to 

estimation, and are parasitic random quantities. Accordingly, when k 
scan cycles are used in the decision making process, the optimum output 
should be the function 

p (sjx) — f.. . f p (s„ ..., sjxr) ds,... dsk_t = 

=M* (s*) I \ ■' -1 ^s« S
A-I/.

X
> P (s*/s»'' *• s*-i>ds* • ■ ■ds"- 

(9.39) 

or any other function which corresponds one-to-one to (9.39).  S is the 
region of variation of the useful parameter s^ 

The factor in the square brackets in the latter expression is the 
statistically substantiated prediction X(sfc) for the current scan 

cycle 

l(St)= J • • .J P(h, • • ;SkJx)p(*J*i S*-.)rfS« ' ' * ^P 
s  i- (9.40) 

' = *s J .. . J A (s, sft_,)/7(s, sA)rfs,...rfs4_l, 

137 



obtained on the basis of observations over k-1 preceding cycles and on the 
basis of the a priori conditional probability p(s /s ,..., s. -).  The 

K J_      k.—l 
function *(sk) is the a priori probability distribution with respect to the 

kth scan cycle. 

If the target coordinates s±  and s   in adjacent scan cycles are totally 

connected random quantities, i.e., they are connected uniquely by a defined 
functional relationship, 

s, = /, (ss) s^, = /,_, (sft), (9.41) 

where f^..., f   are certain uniquely defined functions. 

Here 

/^s1,....s,)-/»(st)S[s1-/1(sft)J...S[s4_1-/,_1(sA)]       (9>42) 

and 

A(s,) = V(sA)A1[/I(s4)]...A,_|[/i_1(S^. (9.43) 

Complete statistical connectedness of the target coordinates in different 
scan cycles can occur, for example, when all that is to be established 
is the presence of the target on a given trajectory, or for a practically 
stationary target.  In the latter case 

s, = s,=t... = sJk = s, (9.44) 

l(s) = P(s)A1(s)...V,(s) (9.45) 

/;(s/x) = *x/>(s)At(s)...A.(s), 
(9.46) 
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which leads to the usual operation of incoherent accumulation of signal 
energy over k repetition periods, where the optimum output Y(s) can be 

the function 

V 
i- 
1=1 

K(s) = cV,lnA,(s). (9-47) 

If the target coordinates in adjacent scan cycles, on the other hand, are 
statistically independent quantities, then 

(9.48) 
p(slt.. .,st) = p(st)... p(sk), 

»W-./.W   ' (9-49) 

and 

p(s/x)=V(«*>W- (9'50) 

As might be expected, if the target coordinates are statistically 
independent in different scan cycles, no value can be extracted from 
the information obtained during the preceding cycles. 

Thus, depending upon the degree of statistical connection between the 
target coordinates in adjacent scan cycles, the potential capabilities 
of a system which considers all preceding scan cycles approach one of two 
limits: the potential capabilities of a system with a single scan cycle 
and with signal energy Q2, or the potential capabilities of a system 
with incoherent accumulation of approximately I/o repetition cycles and 
with total signal energy of Q|. More detailed study of the question of 

the potential capabilities of systems employing previous scan cycles 
requires the use of statistical data concerning the possible target_ 
trajectories as the basis for studying the a priori joint distribution 
function p(sr..., sfc) of the sets of useful parameters S;L  s± tor 

i=l 2  . k. The absence of statistical data concerning the trajectories 
s ,'..!,s. of the reflecting objects makes it more difficult to discuss 

the question of resolution. It is clear, however, that the presence of 
the additional parameters s^.., s^ leads to additional capabilities 

of resolving received signals, while the averaging operation (9.39) 
destroys these capabilities. 
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Figure 9.3 shows one possible version of the block diagram of a system 
which makes complete use of the information over k scan cycles, which is 
a direct interpretation of analytical expression (9.39) for the a posteriori 
probability.  The notation in the figure is as follows:  C — i-system 
which carries out operation (9.35) of converting the received oscillation 
x(t) to Ai(si); x — a multiplication device which multiplies the input 

oscillations (functions); / — integrating device, which carries out 
operation (9.39) of eliminating the parameters s ,..., s,   from the output. 

The outputs of the multiplying devices differ in several coefficients k 
x 

for the functions p(s1,.'.., sjx)  shown in the figure, which, of course, 

does not violate the optimality of the system output. 

,   -,    V<//,   t   Pt',1*) 
—■*      6 ■ /          *"      * 

PN    h 
„  „       >W*z).       „      W.'lW' 

.    PlHl'i)    \ 
\ 

ßhfl 
DD r / 

"   ,    . —         il        fc     \             .1        ,,/.      f      /r) 
. 

* c■ h-7) A'-lls'-'l   *   m-'-N 
 Pfa-tfo-'K-ft 

»     a     t    \       — '-       /            1   \ 
/. ..    A*I'd      „    P(*i~*J*J 

L—1».          1 -*f         i     i                    f*.          *% 

pfaJfizMl 

Fig. 9.3.  Optimum signal processing circuit which realizes target 
trajectory information. 

This optimum processing circuit is extremely complex.  It can be simplified 
significantly if we avoid the attempt to reproduce exactly the optimum 
processing of the received oscillations over a large number of scan cycles. 
The gain achieved by considering previous scan periods will be smaller than 
the theoretical maximum, but it can still be sufficiently large. 
Investigation of these capabilities, as well as the a priori joint distri- 
butions for the sets of parameters (s 
present study. 

■]»•••: s ) are beyond the scope of the 
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n=I 

~ 2e0 «20- 

System (4.68) can be solved for a *. For small errors and small 

deviations of the fixing point, when representation (4.35) is acceptable, 
we can use the approximate values of the right part of equations (4.68). 

In this case 

a-=a*-CMiJ- (4'69) 

Thus, in order to obtain the best estimate a* it is necessary to form 

the two numbers Y^(a., ßQ) and Y^(o, ß*), the first of which 

represents the optimum error signal d. 

By way of illustration, let us find the optimum scheme for forming the 
error signal and obtaining the estimate for the simplest signal £3(t,a) 
which satisfies condition (4.33) and contains the useful parameter a and 
parasitic parameter e. According to (4.68) and (4.23) 

d = K («♦) = ■ I x (t)St (t, a+)at, (4. 70) 
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